2,603 research outputs found

    Efficient Sketching Algorithm for Sparse Binary Data

    Full text link
    Recent advancement of the WWW, IOT, social network, e-commerce, etc. have generated a large volume of data. These datasets are mostly represented by high dimensional and sparse datasets. Many fundamental subroutines of common data analytic tasks such as clustering, classification, ranking, nearest neighbour search, etc. scale poorly with the dimension of the dataset. In this work, we address this problem and propose a sketching (alternatively, dimensionality reduction) algorithm -- \binsketch (Binary Data Sketch) -- for sparse binary datasets. \binsketch preserves the binary version of the dataset after sketching and maintains estimates for multiple similarity measures such as Jaccard, Cosine, Inner-Product similarities, and Hamming distance, on the same sketch. We present a theoretical analysis of our algorithm and complement it with extensive experimentation on several real-world datasets. We compare the performance of our algorithm with the state-of-the-art algorithms on the task of mean-square-error and ranking. Our proposed algorithm offers a comparable accuracy while suggesting a significant speedup in the dimensionality reduction time, with respect to the other candidate algorithms. Our proposal is simple, easy to implement, and therefore can be adopted in practice

    Spatial Random Sampling: A Structure-Preserving Data Sketching Tool

    Full text link
    Random column sampling is not guaranteed to yield data sketches that preserve the underlying structures of the data and may not sample sufficiently from less-populated data clusters. Also, adaptive sampling can often provide accurate low rank approximations, yet may fall short of producing descriptive data sketches, especially when the cluster centers are linearly dependent. Motivated by that, this paper introduces a novel randomized column sampling tool dubbed Spatial Random Sampling (SRS), in which data points are sampled based on their proximity to randomly sampled points on the unit sphere. The most compelling feature of SRS is that the corresponding probability of sampling from a given data cluster is proportional to the surface area the cluster occupies on the unit sphere, independently from the size of the cluster population. Although it is fully randomized, SRS is shown to provide descriptive and balanced data representations. The proposed idea addresses a pressing need in data science and holds potential to inspire many novel approaches for analysis of big data

    Network Sketching: Exploiting Binary Structure in Deep CNNs

    Full text link
    Convolutional neural networks (CNNs) with deep architectures have substantially advanced the state-of-the-art in computer vision tasks. However, deep networks are typically resource-intensive and thus difficult to be deployed on mobile devices. Recently, CNNs with binary weights have shown compelling efficiency to the community, whereas the accuracy of such models is usually unsatisfactory in practice. In this paper, we introduce network sketching as a novel technique of pursuing binary-weight CNNs, targeting at more faithful inference and better trade-off for practical applications. Our basic idea is to exploit binary structure directly in pre-trained filter banks and produce binary-weight models via tensor expansion. The whole process can be treated as a coarse-to-fine model approximation, akin to the pencil drawing steps of outlining and shading. To further speedup the generated models, namely the sketches, we also propose an associative implementation of binary tensor convolutions. Experimental results demonstrate that a proper sketch of AlexNet (or ResNet) outperforms the existing binary-weight models by large margins on the ImageNet large scale classification task, while the committed memory for network parameters only exceeds a little.Comment: To appear in CVPR201
    • …
    corecore