98,234 research outputs found

    System Concepts for Bi- and Multi-Static SAR Missions

    Get PDF
    The performance and capabilities of bi- and multistatic spaceborne synthetic aperture radar (SAR) are analyzed. Such systems can be optimized for a broad range of applications like frequent monitoring, wide swath imaging, single-pass cross-track interferometry, along-track interferometry, resolution enhancement or radar tomography. Further potentials arises from digital beamforming on receive, which allows to gather additional information about the direction of the scattered radar echoes. This directional information can be used to suppress interferences, to improve geometric and radiometric resolution, or to increase the unambiguous swath width. Furthermore, a coherent combination of multiple receiver signals will allow for a suppression of azimuth ambiguities. For this, a reconstruction algorithm is derived, which enables a recovery of the unambiguous Doppler spectrum also in case of non-optimum receiver aperture displacements leading to a non-uniform sampling of the SAR signal. This algorithm has also a great potential for systems relying on the displaced phase center (DPC) technique, like the high resolution wide swath (HRWS) SAR or the split antenna approach in the TerraSAR-X and Radarsat II satellites

    Quantum-inspired computational imaging

    Get PDF
    Computational imaging combines measurement and computational methods with the aim of forming images even when the measurement conditions are weak, few in number, or highly indirect. The recent surge in quantum-inspired imaging sensors, together with a new wave of algorithms allowing on-chip, scalable and robust data processing, has induced an increase of activity with notable results in the domain of low-light flux imaging and sensing. We provide an overview of the major challenges encountered in low-illumination (e.g., ultrafast) imaging and how these problems have recently been addressed for imaging applications in extreme conditions. These methods provide examples of the future imaging solutions to be developed, for which the best results are expected to arise from an efficient codesign of the sensors and data analysis tools.Y.A. acknowledges support from the UK Royal Academy of Engineering under the Research Fellowship Scheme (RF201617/16/31). S.McL. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grant EP/J015180/1). V.G. acknowledges support from the U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office award W911NF-10-1-0404, the U.S. DARPA REVEAL program through contract HR0011-16-C-0030, and U.S. National Science Foundation through grants 1161413 and 1422034. A.H. acknowledges support from U.S. Army Research Office award W911NF-15-1-0479, U.S. Department of the Air Force grant FA8650-15-D-1845, and U.S. Department of Energy National Nuclear Security Administration grant DE-NA0002534. D.F. acknowledges financial support from the UK Engineering and Physical Sciences Research Council (grants EP/M006514/1 and EP/M01326X/1). (RF201617/16/31 - UK Royal Academy of Engineering; EP/J015180/1 - UK Engineering and Physical Sciences Research Council; EP/M006514/1 - UK Engineering and Physical Sciences Research Council; EP/M01326X/1 - UK Engineering and Physical Sciences Research Council; W911NF-10-1-0404 - U.S. Defense Advanced Research Projects Agency (DARPA) InPho program through U.S. Army Research Office; HR0011-16-C-0030 - U.S. DARPA REVEAL program; 1161413 - U.S. National Science Foundation; 1422034 - U.S. National Science Foundation; W911NF-15-1-0479 - U.S. Army Research Office; FA8650-15-D-1845 - U.S. Department of the Air Force; DE-NA0002534 - U.S. Department of Energy National Nuclear Security Administration)Accepted manuscrip

    Frequency-modulated continuous-wave LiDAR compressive depth-mapping

    Get PDF
    We present an inexpensive architecture for converting a frequency-modulated continuous-wave LiDAR system into a compressive-sensing based depth-mapping camera. Instead of raster scanning to obtain depth-maps, compressive sensing is used to significantly reduce the number of measurements. Ideally, our approach requires two difference detectors. % but can operate with only one at the cost of doubling the number of measurments. Due to the large flux entering the detectors, the signal amplification from heterodyne detection, and the effects of background subtraction from compressive sensing, the system can obtain higher signal-to-noise ratios over detector-array based schemes while scanning a scene faster than is possible through raster-scanning. %Moreover, we show how a single total-variation minimization and two fast least-squares minimizations, instead of a single complex nonlinear minimization, can efficiently recover high-resolution depth-maps with minimal computational overhead. Moreover, by efficiently storing only 2m2m data points from m<nm<n measurements of an nn pixel scene, we can easily extract depths by solving only two linear equations with efficient convex-optimization methods

    Inference of stochastic nonlinear oscillators with applications to physiological problems

    Full text link
    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.Comment: 11 pages, 10 figures, 2 tables Fluctuations and Noise 2004, SPIE Conference, 25-28 May 2004 Gran Hotel Costa Meloneras Maspalomas, Gran Canaria, Spai

    Efficient Image Processing Via Compressive Sensing Of Integrate-And-Fire Neuronal Network Dynamics

    Get PDF
    Integrate-and-fire (I&F) neuronal networks are ubiquitous in diverse image processing applications, including image segmentation and visual perception. While conventional I&F network image processing requires the number of nodes composing the network to be equal to the number of image pixels driving the network, we determine whether I&F dynamics can accurately transmit image information when there are significantly fewer nodes than network input-signal components. Although compressive sensing (CS) theory facilitates the recovery of images using very few samples through linear signal processing, it does not address whether similar signal recovery techniques facilitate reconstructions through measurement of the nonlinear dynamics of an I&F network. In this paper, we present a new framework for recovering sparse inputs of nonlinear neuronal networks via compressive sensing. By recovering both one-dimensional inputs and two-dimensional images, resembling natural stimuli, we demonstrate that input information can be well-preserved through nonlinear I&F network dynamics even when the number of network-output measurements is significantly smaller than the number of input-signal components. This work suggests an important extension of CS theory potentially useful in improving the processing of medical or natural images through I&F network dynamics and understanding the transmission of stimulus information across the visual system

    Water-based Liquid Scintillator Detector as a New Technology Testbed for Neutrino Studies in Turkey

    Full text link
    This study investigates the deployment of a medium-scale neutrino detector near Turkey's first nuclear power plant, the Akkuyu Nuclear Power Plant. The aim of this detector is to become a modular testbed for new technologies in the fields of new detection media and innovative photosensors. Such technologies include Water-based Liquid Scintillator (WbLS), Large Area Picosecond Photo-Detectors (LAPPDs), dichroic Winston cones, and large area silicon photomultiplier modules. The detector could be used for instantaneous monitoring of the Akkuyu Nuclear Power Plant via its antineutrino flux. In addition to its physics and technological goals, it would be an invaluable opportunity for the nuclear and particle physics community in Turkey to play a role in the development of next generation of particle detectors in the field of neutrino physics.Comment: V2, updated version with additional reference
    • 

    corecore