33 research outputs found

    Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method

    Get PDF
    How to develop efficient numerical schemes while preserving the energy stability at the discrete level is a challenging issue for the three component Cahn-Hilliard phase-field model. In this paper, we develop first and second order temporal approximation schemes based on the "Invariant Energy Quadratization" approach, where all nonlinear terms are treated semi-explicitly. Consequently, the resulting numerical schemes lead to a well-posed linear system with the symmetric positive definite operator to be solved at each time step. We rigorously prove that the proposed schemes are unconditionally energy stable. Various 2D and 3D numerical simulations are presented to demonstrate the stability and the accuracy of the schemes
    corecore