20 research outputs found

    Slice sampling covariance hyperparameters of latent Gaussian models

    Get PDF
    The Gaussian process (GP) is a popular way to specify dependencies between random variables in a probabilistic model. In the Bayesian framework the covariance structure can be specified using unknown hyperparameters. Integrating over these hyperparameters considers different possible explanations for the data when making predictions. This integration is often performed using Markov chain Monte Carlo (MCMC) sampling. However, with non-Gaussian observations standard hyperparameter sampling approaches require careful tuning and may converge slowly. In this paper we present a slice sampling approach that requires little tuning while mixing well in both strong- and weak-data regimes.Comment: 9 pages, 4 figures, 4 algorithms. Minor corrections to previous version. This version to appear in Advances in Neural Information Processing Systems (NIPS) 23, 201

    Elliptical slice sampling

    Get PDF
    Many probabilistic models introduce strong dependencies between variables using a latent multivariate Gaussian distribution or a Gaussian process. We present a new Markov chain Monte Carlo algorithm for performing inference in models with multivariate Gaussian priors. Its key properties are: 1) it has simple, generic code applicable to many models, 2) it has no free parameters, 3) it works well for a variety of Gaussian process based models. These properties make our method ideal for use while model building, removing the need to spend time deriving and tuning updates for more complex algorithms.Comment: 8 pages, 6 figures, appearing in AISTATS 2010 (JMLR: W&CP volume 6). Differences from first submission: some minor edits in response to feedback

    Gaussian Process Structural Equation Models with Latent Variables

    Full text link
    In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. The sparse parameterization is given a full Bayesian treatment without compromising Markov chain Monte Carlo efficiency. We compare the stability of the sampling procedure and the predictive ability of the model against the current practice.Comment: 12 pages, 6 figure

    A New Monte Carlo Based Algorithm for the Gaussian Process Classification Problem

    Full text link
    Gaussian process is a very promising novel technology that has been applied to both the regression problem and the classification problem. While for the regression problem it yields simple exact solutions, this is not the case for the classification problem, because we encounter intractable integrals. In this paper we develop a new derivation that transforms the problem into that of evaluating the ratio of multivariate Gaussian orthant integrals. Moreover, we develop a new Monte Carlo procedure that evaluates these integrals. It is based on some aspects of bootstrap sampling and acceptancerejection. The proposed approach has beneficial properties compared to the existing Markov Chain Monte Carlo approach, such as simplicity, reliability, and speed
    corecore