2,546 research outputs found

    Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems

    Full text link
    This paper was motivated by the problem of how to make robots fuse and transfer their experience so that they can effectively use prior knowledge and quickly adapt to new environments. To address the problem, we present a learning architecture for navigation in cloud robotic systems: Lifelong Federated Reinforcement Learning (LFRL). In the work, We propose a knowledge fusion algorithm for upgrading a shared model deployed on the cloud. Then, effective transfer learning methods in LFRL are introduced. LFRL is consistent with human cognitive science and fits well in cloud robotic systems. Experiments show that LFRL greatly improves the efficiency of reinforcement learning for robot navigation. The cloud robotic system deployment also shows that LFRL is capable of fusing prior knowledge. In addition, we release a cloud robotic navigation-learning website based on LFRL

    A Universal Semantic-Geometric Representation for Robotic Manipulation

    Full text link
    Robots rely heavily on sensors, especially RGB and depth cameras, to perceive and interact with the world. RGB cameras record 2D images with rich semantic information while missing precise spatial information. On the other side, depth cameras offer critical 3D geometry data but capture limited semantics. Therefore, integrating both modalities is crucial for learning representations for robotic perception and control. However, current research predominantly focuses on only one of these modalities, neglecting the benefits of incorporating both. To this end, we present Semantic-Geometric Representation (SGR), a universal perception module for robotics that leverages the rich semantic information of large-scale pre-trained 2D models and inherits the merits of 3D spatial reasoning. Our experiments demonstrate that SGR empowers the agent to successfully complete a diverse range of simulated and real-world robotic manipulation tasks, outperforming state-of-the-art methods significantly in both single-task and multi-task settings. Furthermore, SGR possesses the unique capability to generalize to novel semantic attributes, setting it apart from the other methods
    • …
    corecore