4,279 research outputs found

    Efficient Retrieval of Similar Time Sequences Under Time Warping

    Get PDF
    Fast similarity searching in large time-sequence databases has attracted a lot of research interest. All of them use the Euclidean distance (L2L_2), or some variation of LpL_p metric. LpL_p metrics lead to efficient indexing, thanks to feature extraction (e.g., by keeping the first few DFT coefficients) and subsequent use of fast spatial access methods for the points in feature space. In this work we examine a popular, field-tested dissimilarity function, the "time warping" distance function which permits local accelerations and decelerations in the rate of the signals or sequences. This function is natural and suitable for several applications, like matching of voice, audio and medical signals (e.g., electrocardiograms). However, from the indexing viewpoint it presents two major challenges: (a) it does not lead to any natural "features", precluding the use of spatial access methods (b) it is quadratic (O(len1∗len2)O(len_1 * len_2)) on the length of the sequences involved. Here we show how to overcome both problems: for the former, we propose using a modification of the so-called "FastMap", to map sequences into points, trading off a tiny amount of "recall" (typically zero) for large gains in speed. For the latter, we provide a fast, linear test, to help us discard quickly many of the false alarms that FastMap will typically introduce. Using both ideas in cascade, our proposed method achieved up to 7.8-time speed-up over the straightforward sequential scanning, on both read and synthetic datasets

    Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

    Get PDF
    Subsequence matching has appeared to be an ideal approach for solving many problems related to the fields of data mining and similarity retrieval. It has been shown that almost any data class (audio, image, biometrics, signals) is or can be represented by some kind of time series or string of symbols, which can be seen as an input for various subsequence matching approaches. The variety of data types, specific tasks and their partial or full solutions is so wide that the choice, implementation and parametrization of a suitable solution for a given task might be complicated and time-consuming; a possibly fruitful combination of fragments from different research areas may not be obvious nor easy to realize. The leading authors of this field also mention the implementation bias that makes difficult a proper comparison of competing approaches. Therefore we present a new generic Subsequence Matching Framework (SMF) that tries to overcome the aforementioned problems by a uniform frame that simplifies and speeds up the design, development and evaluation of subsequence matching related systems. We identify several relatively separate subtasks solved differently over the literature and SMF enables to combine them in straightforward manner achieving new quality and efficiency. This framework can be used in many application domains and its components can be reused effectively. Its strictly modular architecture and openness enables also involvement of efficient solutions from different fields, for instance efficient metric-based indexes. This is an extended version of a paper published on DEXA 2012.Comment: This is an extended version of a paper published on DEXA 201

    Retrieval and Registration of Long-Range Overlapping Frames for Scalable Mosaicking of In Vivo Fetoscopy

    Get PDF
    Purpose: The standard clinical treatment of Twin-to-Twin Transfusion Syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. Methods: To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (i) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (ii) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. Results: In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison to two standard baselines. Conclusion: This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.Comment: Accepted for publication in International Journal of Computer Assisted Radiology and Surgery (IJCARS
    • …
    corecore