3,787 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Exploiting Map Topology Knowledge for Context-predictive Multi-interface Car-to-cloud Communication

    Full text link
    While the automotive industry is currently facing a contest among different communication technologies and paradigms about predominance in the connected vehicles sector, the diversity of the various application requirements makes it unlikely that a single technology will be able to fulfill all given demands. Instead, the joint usage of multiple communication technologies seems to be a promising candidate that allows benefiting from characteristical strengths (e.g., using low latency direct communication for safety-related messaging). Consequently, dynamic network interface selection has become a field of scientific interest. In this paper, we present a cross-layer approach for context-aware transmission of vehicular sensor data that exploits mobility control knowledge for scheduling the transmission time with respect to the anticipated channel conditions for the corresponding communication technology. The proposed multi-interface transmission scheme is evaluated in a comprehensive simulation study, where it is able to achieve significant improvements in data rate and reliability

    UAV-assisted data dissemination based on network coding in vehicular networks

    Get PDF
    Efficient and emergency data dissemination service in vehicular networks (VN) is very important in some situations, such as earthquakes, maritime rescue, and serious traffic accidents. Data loss frequently occurs in the data transition due to the unreliability of the wireless channel and there are no enough available UAVs providing data dissemination service for the large disaster areas. UAV with an adjustable active antenna can be used in light of the situation. However, data dissemination assisted by UAV with the adjustable active antenna needs corresponding effective data dissemination framework. A UAV-assisted data dissemination method based on network coding is proposed. First, the graph theory to model the state of the data loss of the vehicles is used; the data dissemination problem is transformed as the maximum clique problem of the graph. With the coverage of the directional antenna being limited, a parallel method to find the maximum clique based on the region division is proposed. Lastly, the method\u27s effectiveness is demonstrated by the simulation; the results show that the solution proposed can accelerate the solving process of finding the maximum clique and reduce the number of UAV broadcasts. This manuscript designs a novel scheme for the UAV-assisted data dissemination in vehicular networks based on network coding. The graph theory is used to model the state of the data loss of the vehicles. With the coverage of the directional antenna being limited, then a parallel method is proposed to find the maximum clique of the graph based on the region division. The effectiveness of the method is demonstrated by the simulation
    • …
    corecore