129 research outputs found

    Semantic Storage: Overview and Assessment

    No full text
    The Semantic Web has a great deal of momentum behind it. The promise of a ‘better web’, where information is given well defined meaning and computers are better able to work with it has captured the imagination of a significant number of people, particularly in academia. Language standards such as RDF and OWL have appeared with remarkable speed, and development continues apace. To back up this development, there is a requirement for ‘semantic databases’, where this data can be conveniently stored, operated upon, and retrieved. These already exist in the form of triple stores, but do not yet fulfil all the requirements that may be made of them, particularly in the area of performing inference using OWL. This paper analyses the current stores along with forthcoming technology, and finds that it is unlikely that a combination of speed, scalability, and complex inferencing will be practical in the immediate future. It concludes by suggesting alternative development routes

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    An ontology-based approach to Automatic Generation of GUI for Data Entry

    Get PDF
    This thesis reports an ontology-based approach to automatic generation of highly tailored GUI components that can make customized data requests for the end users. Using this GUI generator, without knowing any programming skill a domain expert can browse the data schema through the ontology file of his/her own field, choose attribute fields according to business\u27s needs, and make a highly customized GUI for end users\u27 data requests input. The interface for the domain expert is a tree view structure that shows not only the domain taxonomy categories but also the relationships between classes. By clicking the checkbox associated with each class, the expert indicates his/her choice of the needed information. These choices are stored in a metadata document in XML. From the viewpoint of programmers, the metadata contains no ambiguity; every class in an ontology is unique. The utilizations of the metadata can be various; I have carried out the process of GUI generation. Since every class and every attribute in the class has been formally specified in the ontology, generating GUI is automatic. This approach has been applied to a use case scenario in meteorological and oceanographic (METOC) area. The resulting features of this prototype have been reported in this thesis

    Semantic File Annotation and Retrieval on Mobile Devices

    Get PDF

    ODE-SWS: A Semantic Web Service Development Environment

    Get PDF
    Web Services (WS) are software modules that perform operations that are network-accessible through XML messaging. Web Services in the Semantic Web, that is, Semantic Web Services (SWS), should describe semantically their structure and capabilities to enable its automatic discovery, invocation and composition. In this work we present a development environment to design SWS in a language-independent manner. This environment is based on a framework that defines an ontology set to characterize how a SWS should be specified. The core ontology of this framework describes the SWS problem-solving behaviour and enables the SWS design at a conceptual level. Considering this framework, the SWS development environment is composed of (1) a graphical interface, in which the conceptual design of SWSs is performed, and (2) a tool set, which instantiates the framework ontologies according to the graphical model created by the user, verifies the completeness and consistency of the SWS through instance evaluation, and translates the SWS conceptual model description into SWS (and WS) languages, such as DAML-S, WSDL or UDDI. This tool set is integrated in the WebODE ontology engineering workbench in order to take advantage of its reasoning and ontology translation capabilities
    corecore