24,223 research outputs found

    Efficient Process Model Discovery Using Maximal Pattern Mining

    Get PDF
    In recent years, process mining has become one of the most important and promising areas of research in the field of business process management as it helps businesses understand, analyze, and improve their business processes. In particular, several proposed techniques and algorithms have been proposed to discover and construct process models from workflow execution logs (i.e., event logs). With the existing techniques, mined models can be built based on analyzing the relationship between any two events seen in event logs. Being restricted by that, they can only handle special cases of routing constructs and often produce unsound models that do not cover all of the traces seen in the log. In this paper, we propose a novel technique for process discovery using Maximal Pattern Mining (MPM) where we construct patterns based on the whole sequence of events seen on the traces—ensuring the soundness of the mined models. Our MPM technique can handle loops (of any length), duplicate tasks, non-free choice constructs, and long distance dependencies. Our evaluation shows that it consistently achieves better precision, replay fitness and efficiency than the existing techniques

    Mining frequent biological sequences based on bitmap without candidate sequence generation

    Get PDF
    Biological sequences carry a lot of important genetic information of organisms. Furthermore, there is an inheritance law related to protein function and structure which is useful for applications such as disease prediction. Frequent sequence mining is a core technique for association rule discovery, but existing algorithms suffer from low efficiency or poor error rate because biological sequences differ from general sequences with more characteristics. In this paper, an algorithm for mining Frequent Biological Sequence based on Bitmap, FBSB, is proposed. FBSB uses bitmaps as the simple data structure and transforms each row into a quicksort list QS-list for sequence growth. For the continuity and accuracy requirement of biological sequence mining, tested sequences used during the mining process of FBSB are real ones instead of generated candidates, and all the frequent sequences can be mined without any errors. Comparing with other algorithms, the experimental results show that FBSB can achieve a better performance on both run time and scalability
    corecore