3 research outputs found

    Advances in Processing, Mining, and Learning Complex Data: From Foundations to Real-World Applications

    Get PDF
    Processing, mining, and learning complex data refer to an advanced study area of data mining and knowledge discovery concerning the development and analysis of approaches for discovering patterns and learning models from data with a complex structure (e.g., multirelational data, XML data, text data, image data, time series, sequences, graphs, streaming data, and trees) [1–5]. These kinds of data are commonly encountered in many social, economic, scientific, and engineering applications. Complex data pose new challenges for current research in data mining and knowledge discovery as they require new methods for processing, mining, and learning them. Traditional data analysis methods often require the data to be represented as vectors [6]. However, many data objects in real-world applications, such as chemical compounds in biopharmacy, brain regions in brain health data, users in business networks, and time-series information in medical data, contain rich structure information (e.g., relationships between data and temporal structures). Such a simple feature-vector representation inherently loses the structure information of the objects. In reality, objects may have complicated characteristics, depending on how the objects are assessed and characterized. Meanwhile, the data may come from heterogeneous domains [7], such as traditional tabular-based data, sequential patterns, graphs, time-series information, and semistructured data. Novel data analytics methods are desired to discover meaningful knowledge in advanced applications from data objects with complex characteristics. This special issue contributes to the fundamental research in processing, mining, and learning complex data, focusing on the analysis of complex data sources

    Efficient Privacy-Preserving Protocol for k-NN Search over Encrypted Data in Location-Based Service

    No full text
    With the development of mobile communication technology, location-based services (LBS) are booming prosperously. Meanwhile privacy protection has become the main obstacle for the further development of LBS. The k-nearest neighbor (k-NN) search is one of the most common types of LBS. In this paper, we propose an efficient private circular query protocol (EPCQP) with high accuracy rate and low computation and communication cost. We adopt the Moore curve to convert two-dimensional spatial data into one-dimensional sequence and encrypt the points of interest (POIs) information with the Brakerski-Gentry-Vaikuntanathan homomorphic encryption scheme for privacy-preserving. The proposed scheme performs the secret circular shift of the encrypted POIs information to hide the location of the user without a trusted third party. To reduce the computation and communication cost, we dynamically divide the table of the POIs information according to the value of k. Experiments show that the proposed scheme provides high accuracy query results while maintaining low computation and communication cost

    Efficient Privacy-Preserving Protocol for k

    Get PDF
    corecore