13,076 research outputs found

    Analyzing Whole-Body Pose Transitions in Multi-Contact Motions

    Full text link
    When executing whole-body motions, humans are able to use a large variety of support poses which not only utilize the feet, but also hands, knees and elbows to enhance stability. While there are many works analyzing the transitions involved in walking, very few works analyze human motion where more complex supports occur. In this work, we analyze complex support pose transitions in human motion involving locomotion and manipulation tasks (loco-manipulation). We have applied a method for the detection of human support contacts from motion capture data to a large-scale dataset of loco-manipulation motions involving multi-contact supports, providing a semantic representation of them. Our results provide a statistical analysis of the used support poses, their transitions and the time spent in each of them. In addition, our data partially validates our taxonomy of whole-body support poses presented in our previous work. We believe that this work extends our understanding of human motion for humanoids, with a long-term objective of developing methods for autonomous multi-contact motion planning.Comment: 8 pages, IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness
    • …
    corecore