205 research outputs found

    A new-generation class of parallel architectures and their performance evaluation

    Get PDF
    The development of computers with hundreds or thousands of processors and capability for very high performance is absolutely essential for many computation problems, such as weather modeling, fluid dynamics, and aerodynamics. Several interconnection networks have been proposed for parallel computers. Nevertheless, the majority of them are plagued by rather poor topological properties that result in large memory latencies for DSM (Distributed Shared-Memory) computers. On the other hand, scalable networks with very good topological properties are often impossible to build because of their prohibitively high VLSI (e.g., wiring) complexity. Such a network is the generalized hypercube (GH). The GH supports full-connectivity of its nodes in each dimension and is characterized by outstanding topological properties. In addition, low-dimensional GHs have very large bisection widths. We propose in this dissertation a new class of processor interconnections, namely HOWs (Highly Overlapping Windows), that are more generic than the GH, are highly scalable, and have comparable performance. We analyze the communications capabilities of 2-D HOW systems and demonstrate that in practical cases HOW systems perform much better than binary hypercubes for important communications patterns. These properties are in addition to the good scalability and low hardware complexity of HOW systems. We present algorithms for one-to-one, one-to-all broadcasting, all-to-all broadcasting, one-to-all personalized, and all-to-all personalized communications on HOW systems. These algorithms are developed and evaluated for several communication models. In addition, we develop techniques for the efficient embedding of popular topologies, such as the ring, the torus, and the hypercube, into 1-D and 2-D HOW systems. The objective is to show that 2-D HOW systems are not only scalable and easy to implement, but they also result in good embedding of several classical topologies

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    On the design and implementation of broadcast and global combine operations using the postal model

    Get PDF
    There are a number of models that were proposed in recent years for message passing parallel systems. Examples are the postal model and its generalization the LogP model. In the postal model a parameter λ is used to model the communication latency of the message-passing system. Each node during each round can send a fixed-size message and, simultaneously, receive a message of the same size. Furthermore, a message sent out during round r will incur a latency of hand will arrive at the receiving node at round r + λ - 1. Our goal in this paper is to bridge the gap between the theoretical modeling and the practical implementation. In particular, we investigate a number of practical issues related to the design and implementation of two collective communication operations, namely, the broadcast operation and the global combine operation. Those practical issues include, for example, 1) techniques for measurement of the value of λ on a given machine, 2) creating efficient broadcast algorithms that get the latency hand the number of nodes n as parameters and 3) creating efficient global combine algorithms for parallel machines with λ which is not an integer. We propose solutions that address those practical issues and present results of an experimental study of the new algorithms on the Intel Delta machine. Our main conclusion is that the postal model can help in performance prediction and tuning, for example, a properly tuned broadcast improves the known implementation by more than 20%

    Polyvalent Parallelizations for Hierarchical Block Matching Motion Estimation

    Get PDF
    Block matching motion estimation algorithms are widely used in video coding schemes. In this paper,we design an efficient hierarchical block matching motion estimation (HBMME) algorithm on a hypercube multiprocessor. Unlike systolic array designs, this solution is not tied down to specific values of algorithm parameters and thus offers increased flexibility. Moreover, the hypercube network can efficiently handle the non regular data flow of the HBMME algorithm. Our techniques nearly eliminate the occurrence of “difficult” communication patterns, namely many-to-many personalized communication, by replacing them with simple shift operations. These operations have an efficient implementation on most of interconnection networks and thus our techniques can be adapted to other networks as well. With regard to the employed multiprocessor we make no specific assumption about the amount of local memory residing in each processor. Instead, we introduce a free parameter S and assume that each processor has O(S) local memory. By doing so, we handle all the cases of modern multiprocessors, that is fine-grained, medium-grained and coarse-grained multiprocessors and thus our design is quite general

    A secure and lightweight ad-hoc routing algorithm for personal networks

    Get PDF
    Over the past few years, there has been increasing interest in utilizing Personal Area Networks (PANs) to offer users innovative and personalized services. This interest is a consequence of the widespread use of mobile devices such as laptops, mobile phones, PDAs, digital cameras, wireless headsets, etc. to carry out a variety of user-centric tasks. The PAN itself is built upon an ad-hoc network where devices trust their neighbors to route their packets. The cooperative nature of ad-hoc networks allows malicious nodes to easily cripple the network by inserting false route information, replaying old messages, modifying messages of other nodes, etc. An applicable area still under research, and the focus of this paper, is secure routing protocols for ad-hoc networks. To achieve availability in the PAN, the routing protocol used must be robust against both dynamically changing topology and malicious attacks. However, the heterogeneous nature of Personal Network (PN) devices means that traditional security mechanisms are too resource intensive to be sufficient by themselves. This paper describes a new ad-hoc secure routing protocol for Personal Networks (PNs), suitable in a limited multi-hop scenario. This protocol is based on ADOV and relies on efficient cryptographic primitives to safeguard the security and privacy of PN users. Following that, a number of attacks in the area of ad-hoc networks are discussed, and it is shown that the new algorithm protects against multiple un-coordinated active attackers, in spite of compromised nodes in the network

    General broadcasting algorithms in one-port wormhole routed hypercubes

    Full text link
    Wormhole routing has been accepted as an efficient switching mechanism in point-to-point interconnection networks. Here the network resource, i.e. node buffers and communication channels, are effectively utilized to deliver message across the network; We consider the problem of broadcasting a message in the hypercue equipped with the wormhole switching mechanism. The model is a generalization of an earlier work and considers a broadcast path-length of {dollar}m\ (1\leq m\leq n{dollar}) in the n-cube with a single-port communication capability. In this thesis, the scheme of e-cube and a Gray code path routing and intermediate reception capability have been adopted in order to solve the problem of broadcasting in one-port wormhole routed hypercubes. Two methods have been suggested; one is based on utilizing the Gray codes (Gray code path-based routing), while the other is based on the recursive partitioning of the cube (cube-based routing). The number of routing steps in both methods are compared to those in the previous results, as well as to the lower bounds derived based on the path-length m assumption. A cube-based and a path-based algorithm give {dollar}T(R)+(k\sb{c}+1)T(m){dollar} and {dollar}k\sb{G} +T(m){dollar} routing steps, respectively. By comparison with routing steps of both algorithms, the performance of the path-based algorithm shows better than that of the cube-based; The results of this work are significant and can be used for immediate implementation in contemporary machines most of which are equipped with wormhole routing and serial communication capability

    Recursive Cube of Rings: A new topology for interconnection networks

    Get PDF
    In this paper, we introduce a family of scalable interconnection network topologies, named Recursive Cube of Rings (RCR), which are recursively constructed by adding ring edges to a cube. RCRs possess many desirable topological properties in building scalable parallel machines, such as fixed degree, small diameter, wide bisection width, symmetry, fault tolerance, etc. We first examine the topological properties of RCRs. We then present and analyze a general deadlock-free routing algorithm for RCRs. Using a complete binary tree embedded into an RCR with expansion-cost approximating to one, an efficient broadcast routing algorithm on RCRs is proposed. The upper bound of the number of message passing steps in one broadcast operation on a general RCR is also derived.published_or_final_versio

    Optimal all-to-all personalized exchange in self-routable multistage networks

    Full text link

    I/O embedding and broadcasting in star interconnection networks

    Full text link
    The issues of communication between a host or central controller and processors, in large interconnection networks are very important and have been studied in the past by several researchers. There is a plethora of problems that arise when processors are asked to exchange information on parallel computers on which processors are interconnected according to a specific topology. In robust networks, it is desirable at times to send (receive) data/control information to (from) all the processors in minimal time. This type of communication is commonly referred to as broadcasting. To speed up broadcasting in a given network without modifying its topology, certain processors called stations can be specified to act as relay agents. In this thesis, broadcasting issues in a star-based interconnection network are studied. The model adopted assumes all-port communication and wormhole switching mechanism. Initially, the problem treated is one of finding the minimum number of stations required to cover all the nodes in the star graph with i-adjacency. We consider 1-, 2-, and 3-adjacencies and determine the upper bound on the number of stations required to cover the nodes for each case. After deriving the number of stations, two algorithms are designed to broadcast the messages first from the host to stations, and then from stations to remaining nodes; In addition, a Binary-based Algorithm is designed to allow routing in the network by directly working on the binary labels assigned to the star graph. No look-up table is consulted during routing and minimum number of bits are used to represent a node label. At the end, the thesis sheds light on another algorithm for routing using parallel paths in the star network
    • …
    corecore