4 research outputs found

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning

    Get PDF
    Dexterous manipulation, especially dexterous grasping, is a primitive and crucial ability of robots that allows the implementation of performing human-like behaviors. Deploying the ability on robots enables them to assist and substitute human to accomplish more complex tasks in daily life and industrial production. A comprehensive review of the methods based on point cloud and deep learning for robotics dexterous grasping from three perspectives is given in this paper. As a new category schemes of the mainstream methods, the proposed generation-evaluation framework is the core concept of the classification. The other two classifications based on learning modes and applications are also briefly described afterwards. This review aims to afford a guideline for robotics dexterous grasping researchers and developers

    Efficient Optimization for Autonomous Robotic Manipulation of Natural Objects

    No full text
    Manipulating natural objects of irregular shapes, such as rocks, is an essential capability of robots operating in outdoor environments. Physics-based simulators are commonly used to plan stable grasps for man-made objects. However, planning is an expensive process that is based on simulating hand and object trajectories in different configurations, and evaluating the outcome of each trajectory. This problem is particularly concerning when the objects are irregular or cluttered, because the space of feasible grasps is significantly smaller, and more configurations need to be evaluated before finding a good one. In this paper, we first present a learning technique for fast detection of an initial set of potentially stable grasps in a cluttered scene. The best detected grasps are further optimized by fine-tuning the configuration of the hand in simulation. To reduce the computational burden of this last operation, we model the outcomes of the grasps as a Gaussian Process, and use an entropy-search method in order to focus the optimization on regions where the best grasp is most likely to be. This approach is tested on the task of clearing piles of real, unknown, rock debris with an autonomous robot. Empirical results show a clear advantage of the proposed approach when the time window for decision is short
    corecore