275,207 research outputs found

    Design and analysis of group key exchange protocols

    Get PDF
    A group key exchange (GKE) protocol allows a set of parties to agree upon a common secret session key over a public network. In this thesis, we focus on designing efficient GKE protocols using public key techniques and appropriately revising security models for GKE protocols. For the purpose of modelling and analysing the security of GKE protocols we apply the widely accepted computational complexity approach. The contributions of the thesis to the area of GKE protocols are manifold. We propose the first GKE protocol that requires only one round of communication and is proven secure in the standard model. Our protocol is generically constructed from a key encapsulation mechanism (KEM). We also suggest an efficient KEM from the literature, which satisfies the underlying security notion, to instantiate the generic protocol. We then concentrate on enhancing the security of one-round GKE protocols. A new model of security for forward secure GKE protocols is introduced and a generic one-round GKE protocol with forward security is then presented. The security of this protocol is also proven in the standard model. We also propose an efficient forward secure encryption scheme that can be used to instantiate the generic GKE protocol. Our next contributions are to the security models of GKE protocols. We observe that the analysis of GKE protocols has not been as extensive as that of two-party key exchange protocols. Particularly, the security attribute of key compromise impersonation (KCI) resilience has so far been ignored for GKE protocols. We model the security of GKE protocols addressing KCI attacks by both outsider and insider adversaries. We then show that a few existing protocols are not secure against KCI attacks. A new proof of security for an existing GKE protocol is given under the revised model assuming random oracles. Subsequently, we treat the security of GKE protocols in the universal composability (UC) framework. We present a new UC ideal functionality for GKE protocols capturing the security attribute of contributiveness. An existing protocol with minor revisions is then shown to realize our functionality in the random oracle model. Finally, we explore the possibility of constructing GKE protocols in the attribute-based setting. We introduce the concept of attribute-based group key exchange (AB-GKE). A security model for AB-GKE and a one-round AB-GKE protocol satisfying our security notion are presented. The protocol is generically constructed from a new cryptographic primitive called encapsulation policy attribute-based KEM (EP-AB-KEM), which we introduce in this thesis. We also present a new EP-AB-KEM with a proof of security assuming generic groups and random oracles. The EP-AB-KEM can be used to instantiate our generic AB-GKE protocol

    One Round Group Key Exchange with Forward Security in the Standard Model

    Get PDF
    Constructing a one round group key exchange (GKE) protocol that provides forward secrecy is an open problem in the literature. In this paper, we investigate whether or not the security of one round GKE protocols can be enhanced with any form of forward secrecy without increasing the number of rounds. We apply the {\em key evolving} approach used for forward secure encryption/signature schemes and then model the notion of forward security for the first time for key exchange protocols. This notion is slightly weaker than forward secrecy, considered traditionally for key exchange protocols. We then revise an existing one round GKE protocol to propose a GKE protocol with forward security. In the security proof of the revised protocol we completely avoid reliance on the random oracle assumption that was needed for the proof of the base protocol. Our security proof can be directly applied to the base protocol, making it the most efficient one round GKE protocol secure in the standard model. Our one round GKE protocol is generically constructed from the primitive of forward secure encryption. We also propose a concrete forward secure encryption scheme with constant size ciphertext that can be used to efficiently instantiate our protocol

    Smooth NIZK Arguments with Applications to Asymmetric UC-PAKE and Threshold-IBE

    Get PDF
    We introduce a novel notion of smooth (-verifier) non-interactive zero-knowledge proofs (NIZK) which parallels the familiar notion of smooth projective hash functions (SPHF). We also show that the recent single group element quasi-adaptive NIZK (QA-NIZK) of Jutla and Roy (CRYPTO 2014) for linear subspaces can be easily extended to be computationally smooth. One important distinction of the new notion from SPHFs is that in a smooth NIZK the public evaluation of the hash on a language member using the projection key does not require the witness of the language member, but instead just requires its NIZK proof. This has the remarkable consequence that in the Gennaro-Lindell paradigm of designing universally-composable password-authenticated key-exchange (UC-PAKE) protocols, if one replaces the traditionally employed SPHFs with the novel smooth QA-NIZK, one gets highly efficient UC-PAKE protocols that are secure even under dynamic corruption. This simpler and modular design methodology allows us to give the first single-round asymmetric UC-PAKE protocol, which is also secure under dynamic corruption in the erasure model. We also define a related concept of smooth signatures, which we show is black-box equivalent to identity-based encryption (IBE). The novel abstraction allows us to give the first threshold (private-key generation) fully-secure IBE in the standard model

    Group theory in cryptography

    Full text link
    This paper is a guide for the pure mathematician who would like to know more about cryptography based on group theory. The paper gives a brief overview of the subject, and provides pointers to good textbooks, key research papers and recent survey papers in the area.Comment: 25 pages References updated, and a few extra references added. Minor typographical changes. To appear in Proceedings of Groups St Andrews 2009 in Bath, U
    • …
    corecore