42 research outputs found

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result

    Locally Non-linear Embeddings for Extreme Multi-label Learning

    Full text link
    The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimensional label vectors onto a low dimensional linear subspace. Still, leading embedding approaches have been unable to deliver high prediction accuracies or scale to large problems as the low rank assumption is violated in most real world applications. This paper develops the X-One classifier to address both limitations. The main technical contribution in X-One is a formulation for learning a small ensemble of local distance preserving embeddings which can accurately predict infrequently occurring (tail) labels. This allows X-One to break free of the traditional low-rank assumption and boost classification accuracy by learning embeddings which preserve pairwise distances between only the nearest label vectors. We conducted extensive experiments on several real-world as well as benchmark data sets and compared our method against state-of-the-art methods for extreme multi-label classification. Experiments reveal that X-One can make significantly more accurate predictions then the state-of-the-art methods including both embeddings (by as much as 35%) as well as trees (by as much as 6%). X-One can also scale efficiently to data sets with a million labels which are beyond the pale of leading embedding methods

    On Learning Vector Representations in Hierarchical Label Spaces

    Full text link
    An important problem in multi-label classification is to capture label patterns or underlying structures that have an impact on such patterns. This paper addresses one such problem, namely how to exploit hierarchical structures over labels. We present a novel method to learn vector representations of a label space given a hierarchy of labels and label co-occurrence patterns. Our experimental results demonstrate qualitatively that the proposed method is able to learn regularities among labels by exploiting a label hierarchy as well as label co-occurrences. It highlights the importance of the hierarchical information in order to obtain regularities which facilitate analogical reasoning over a label space. We also experimentally illustrate the dependency of the learned representations on the label hierarchy
    corecore