843 research outputs found

    The Power of Proofs: New Algorithms for Timed Automata Model Checking (with Appendix)

    Full text link
    This paper presents the first model-checking algorithm for an expressive modal mu-calculus over timed automata, Lν,μrel,afL^{\mathit{rel}, \mathit{af}}_{\nu,\mu}, and reports performance results for an implementation. This mu-calculus contains extended time-modality operators and can express all of TCTL. Our algorithmic approach uses an "on-the-fly" strategy based on proof search as a means of ensuring high performance for both positive and negative answers to model-checking questions. In particular, a set of proof rules for solving model-checking problems are given and proved sound and complete; we encode our algorithm in these proof rules and model-check a property by constructing a proof (or showing none exists) using these rules. One noteworthy aspect of our technique is that we show that verification performance can be improved with \emph{derived rules}, whose correctness can be inferred from the more primitive rules on which they are based. In this paper, we give the basic proof rules underlying our method, describe derived proof rules to improve performance, and compare our implementation of this model checker to the UPPAAL tool.Comment: This is the preprint of the FORMATS 2014 paper, but this is the full version, containing the Appendix. The final publication is published from Springer, and is available at http://link.springer.com/chapter/10.1007%2F978-3-319-10512-3_9 on the Springer webpag

    TarTar: A Timed Automata Repair Tool

    Full text link
    We present TarTar, an automatic repair analysis tool that, given a timed diagnostic trace (TDT) obtained during the model checking of a timed automaton model, suggests possible syntactic repairs of the analyzed model. The suggested repairs include modified values for clock bounds in location invariants and transition guards, adding or removing clock resets, etc. The proposed repairs are guaranteed to eliminate executability of the given TDT, while preserving the overall functional behavior of the system. We give insights into the design and architecture of TarTar, and show that it can successfully repair 69% of the seeded errors in system models taken from a diverse suite of case studies.Comment: 15 pages, 7 figure

    A Unifying Approach to Decide Relations for Timed Automata and their Game Characterization

    Full text link
    In this paper we present a unifying approach for deciding various bisimulations, simulation equivalences and preorders between two timed automata states. We propose a zone based method for deciding these relations in which we eliminate an explicit product construction of the region graphs or the zone graphs as in the classical methods. Our method is also generic and can be used to decide several timed relations. We also present a game characterization for these timed relations and show that the game hierarchy reflects the hierarchy of the timed relations. One can obtain an infinite game hierarchy and thus the game characterization further indicates the possibility of defining new timed relations which have not been studied yet. The game characterization also helps us to come up with a formula which encodes the separation between two states that are not timed bisimilar. Such distinguishing formulae can also be generated for many relations other than timed bisimilarity.Comment: In Proceedings EXPRESS/SOS 2013, arXiv:1307.690
    • …
    corecore