170,890 research outputs found

    Efficient and Privacy-Preserving Ride Sharing Organization for Transferable and Non-Transferable Services

    Full text link
    Ride-sharing allows multiple persons to share their trips together in one vehicle instead of using multiple vehicles. This can reduce the number of vehicles in the street, which consequently can reduce air pollution, traffic congestion and transportation cost. However, a ride-sharing organization requires passengers to report sensitive location information about their trips to a trip organizing server (TOS) which creates a serious privacy issue. In addition, existing ride-sharing schemes are non-flexible, i.e., they require a driver and a rider to have exactly the same trip to share a ride. Moreover, they are non-scalable, i.e., inefficient if applied to large geographic areas. In this paper, we propose two efficient privacy-preserving ride-sharing organization schemes for Non-transferable Ride-sharing Services (NRS) and Transferable Ride-sharing Services (TRS). In the NRS scheme, a rider can share a ride from its source to destination with only one driver whereas, in TRS scheme, a rider can transfer between multiple drivers while en route until he reaches his destination. In both schemes, the ride-sharing area is divided into a number of small geographic areas, called cells, and each cell has a unique identifier. Each driver/rider should encrypt his trip's data and send an encrypted ride-sharing offer/request to the TOS. In NRS scheme, Bloom filters are used to compactly represent the trip information before encryption. Then, the TOS can measure the similarity between the encrypted trips data to organize shared rides without revealing either the users' identities or the location information. In TRS scheme, drivers report their encrypted routes, an then the TOS builds an encrypted directed graph that is passed to a modified version of Dijkstra's shortest path algorithm to search for an optimal path of rides that can achieve a set of preferences defined by the riders

    Dynamic Thresholding Mechanisms for IR-Based Filtering in Efficient Source Code Plagiarism Detection

    Full text link
    To solve time inefficiency issue, only potential pairs are compared in string-matching-based source code plagiarism detection; wherein potentiality is defined through a fast-yet-order-insensitive similarity measurement (adapted from Information Retrieval) and only pairs which similarity degrees are higher or equal to a particular threshold is selected. Defining such threshold is not a trivial task considering the threshold should lead to high efficiency improvement and low effectiveness reduction (if it is unavoidable). This paper proposes two thresholding mechanisms---namely range-based and pair-count-based mechanism---that dynamically tune the threshold based on the distribution of resulted similarity degrees. According to our evaluation, both mechanisms are more practical to be used than manual threshold assignment since they are more proportional to efficiency improvement and effectiveness reduction.Comment: The 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS
    • …
    corecore