8,821 research outputs found

    A Taxonomy and Future Directions for Sustainable Cloud Computing: 360 Degree View

    Full text link
    The cloud computing paradigm offers on-demand services over the Internet and supports a wide variety of applications. With the recent growth of Internet of Things (IoT) based applications the usage of cloud services is increasing exponentially. The next generation of cloud computing must be energy-efficient and sustainable to fulfil the end-user requirements which are changing dynamically. Presently, cloud providers are facing challenges to ensure the energy efficiency and sustainability of their services. The usage of large number of cloud datacenters increases cost as well as carbon footprints, which further effects the sustainability of cloud services. In this paper, we propose a comprehensive taxonomy of sustainable cloud computing. The taxonomy is used to investigate the existing techniques for sustainability that need careful attention and investigation as proposed by several academic and industry groups. Further, the current research on sustainable cloud computing is organized into several categories: application design, sustainability metrics, capacity planning, energy management, virtualization, thermal-aware scheduling, cooling management, renewable energy and waste heat utilization. The existing techniques have been compared and categorized based on the common characteristics and properties. A conceptual model for sustainable cloud computing has been proposed along with discussion on future research directions.Comment: 68 pages, 38 figures, ACM Computing Surveys, 201

    Load Balancing with preemptive and non-preemptive task scheduling in Cloud Computing

    Full text link
    In Cloud computing environment the resources are managed dynamically based on the need and demand for resources for a particular task. With a lot of challenges to be addressed our concern is Load balancing where load balancing is done for optimal usage of resources and reduces the cost associated with it as we use pay-as-you-go policy. The task scheduling is done by the cloud service provider using preemption and non-preemption based on the requirements in a virtualized scenario which has been focused here. In this paper, various task scheduling algorithms are studied to present the dynamic allocation of resources under each category and the ways each of this scheduling algorithm adapts to handle the load and have high-performance computin

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    Application Management in Fog Computing Environments: A Taxonomy, Review and Future Directions

    Full text link
    The Internet of Things (IoT) paradigm is being rapidly adopted for the creation of smart environments in various domains. The IoT-enabled Cyber-Physical Systems (CPSs) associated with smart city, healthcare, Industry 4.0 and Agtech handle a huge volume of data and require data processing services from different types of applications in real-time. The Cloud-centric execution of IoT applications barely meets such requirements as the Cloud datacentres reside at a multi-hop distance from the IoT devices. \textit{Fog computing}, an extension of Cloud at the edge network, can execute these applications closer to data sources. Thus, Fog computing can improve application service delivery time and resist network congestion. However, the Fog nodes are highly distributed, heterogeneous and most of them are constrained in resources and spatial sharing. Therefore, efficient management of applications is necessary to fully exploit the capabilities of Fog nodes. In this work, we investigate the existing application management strategies in Fog computing and review them in terms of architecture, placement and maintenance. Additionally, we propose a comprehensive taxonomy and highlight the research gaps in Fog-based application management. We also discuss a perspective model and provide future research directions for further improvement of application management in Fog computing

    Synchronized Multi-Load Balancer with Fault Tolerance in Cloud

    Full text link
    In this method, service of one load balancer can be borrowed or shared among other load balancers when any correction is needed in the estimation of the load.Comment: 8 Pages, 10 figure

    A Survey on 5G: The Next Generation of Mobile Communication

    Full text link
    The rapidly increasing number of mobile devices, voluminous data, and higher data rate are pushing to rethink the current generation of the cellular mobile communication. The next or fifth generation (5G) cellular networks are expected to meet high-end requirements. The 5G networks are broadly characterized by three unique features: ubiquitous connectivity, extremely low latency, and very high-speed data transfer. The 5G networks would provide novel architectures and technologies beyond state-of-the-art architectures and technologies. In this paper, our intent is to find an answer to the question: "what will be done by 5G and how?" We investigate and discuss serious limitations of the fourth generation (4G) cellular networks and corresponding new features of 5G networks. We identify challenges in 5G networks, new technologies for 5G networks, and present a comparative study of the proposed architectures that can be categorized on the basis of energy-efficiency, network hierarchy, and network types. Interestingly, the implementation issues, e.g., interference, QoS, handoff, security-privacy, channel access, and load balancing, hugely effect the realization of 5G networks. Furthermore, our illustrations highlight the feasibility of these models through an evaluation of existing real-experiments and testbeds.Comment: Accepted in Elsevier Physical Communication, 24 pages, 5 figures, 2 table

    Mobile Edge Cloud: Opportunities and Challenges

    Full text link
    Mobile edge cloud is emerging as a promising technology to the internet of things and cyber-physical system applications such as smart home and intelligent video surveillance. In a smart home, various sensors are deployed to monitor the home environment and physiological health of individuals. The data collected by sensors are sent to an application, where numerous algorithms for emotion and sentiment detection, activity recognition and situation management are applied to provide healthcare- and emergency-related services and to manage resources at the home. The executions of these algorithms require a vast amount of computing and storage resources. To address the issue, the conventional approach is to send the collected data to an application on an internet cloud. This approach has several problems such as high communication latency, communication energy consumption and unnecessary data traffic to the core network. To overcome the drawbacks of the conventional cloud-based approach, a new system called mobile edge cloud is proposed. In mobile edge cloud, multiple mobiles and stationary devices interconnected through wireless local area networks are combined to create a small cloud infrastructure at a local physical area such as a home. Compared to traditional mobile distributed computing systems, mobile edge cloud introduces several complex challenges due to the heterogeneous computing environment, heterogeneous and dynamic network environment, node mobility, and limited battery power. The real-time requirements associated with the internet of things and cyber-physical system applications make the problem even more challenging. In this paper, we describe the applications and challenges associated with the design and development of mobile edge cloud system and propose an architecture based on a cross layer design approach for effective decision making.Comment: 4th Annual Conference on Computational Science and Computational Intelligence, December 14-16, 2017, Las Vegas, Nevada, USA. arXiv admin note: text overlap with arXiv:1810.0704

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Delivering IT as A Utility- A Systematic Review

    Full text link
    Utility Computing has facilitated the creation of new markets that has made it possible to realize the long held dream of delivering IT as a Utility. Even though utility computing is in its nascent stage today, the proponents of utility computing envisage that it will become a commodity business in the upcoming time and utility service providers will meet all the IT requests of the companies. This paper takes a cross-sectional view at the emergence of utility computing along with different requirements needed to realize utility model. It also surveys the current trends in utility computing highlighting diverse architecture models aligned towards delivering IT as a utility. Different resource management systems for proficient allocation of resources have been listed together with various resource scheduling and pricing strategies used by them. Further, a review of generic key perspectives closely related to the concept of delivering IT as a Utility has been taken citing the contenders for the future enhancements in this technology in the form of Grid and Cloud Computing.Comment: No. of Pages- 20 No. of Figures- 3 No. of Tables- 1

    Base Station ON-OFF Switching in 5G Wireless Networks: Approaches and Challenges

    Full text link
    To achieve the expected 1000x data rates under the exponential growth of traffic demand, a large number of base stations (BS) or access points (AP) will be deployed in the fifth generation (5G) wireless systems, to support high data rate services and to provide seamless coverage. Although such BSs are expected to be small-scale with lower power, the aggregated energy consumption of all BSs would be remarkable, resulting in increased environmental and economic concerns. In existing cellular networks, turning off the under-utilized BSs is an efficient approach to conserve energy while preserving the quality of service (QoS) of mobile users. However, in 5G systems with new physical layer techniques and the highly heterogeneous network architecture, new challenges arise in the design of BS ON-OFF switching strategies. In this article, we begin with a discussion on the inherent technical challenges of BS ON-OFF switching. We then provide a comprehensive review of recent advances on switching mechanisms in different application scenarios. Finally, we present open research problems and conclude the paper.Comment: Appear to IEEE Wireless Communications, 201
    • …
    corecore