7 research outputs found

    Efficient Learning of Distributed Linear-Quadratic Controllers

    Full text link
    In this work, we propose a robust approach to design distributed controllers for unknown-but-sparse linear and time-invariant systems. By leveraging modern techniques in distributed controller synthesis and structured linear inverse problems as applied to system identification, we show that near-optimal distributed controllers can be learned with sub-linear sample complexity and computed with near-linear time complexity, both measured with respect to the dimension of the system. In particular, we provide sharp end-to-end guarantees on the stability and the performance of the designed distributed controller and prove that for sparse systems, the number of samples needed to guarantee robust and near optimal performance of the designed controller can be significantly smaller than the dimension of the system. Finally, we show that the proposed optimization problem can be solved to global optimality with near-linear time complexity by iteratively solving a series of small quadratic programs

    Distributed Online Linear Quadratic Control for Linear Time-invariant Systems

    Full text link
    Classical linear quadratic (LQ) control centers around linear time-invariant (LTI) systems, where the control-state pairs introduce a quadratic cost with time-invariant parameters. Recent advancement in online optimization and control has provided novel tools to study LQ problems that are robust to time-varying cost parameters. Inspired by this line of research, we study the distributed online LQ problem for identical LTI systems. Consider a multi-agent network where each agent is modeled as an LTI system. The LTI systems are associated with decoupled, time-varying quadratic costs that are revealed sequentially. The goal of the network is to make the control sequence of all agents competitive to that of the best centralized policy in hindsight, captured by the notion of regret. We develop a distributed variant of the online LQ algorithm, which runs distributed online gradient descent with a projection to a semi-definite programming (SDP) to generate controllers. We establish a regret bound scaling as the square root of the finite time-horizon, implying that agents reach consensus as time grows. We further provide numerical experiments verifying our theoretical result

    Frontiers in Scalable Distributed Control: SLS, MPC, and Beyond

    Get PDF
    The System Level Synthesis (SLS) approach facilitates distributed control of large cyberphysical networks in an easy-to-understand, computationally scalable way. We present an overview of the SLS approach and its associated extensions in nonlinear control, MPC, adaptive control, and learning for control. To illustrate the effectiveness of SLS-based methods, we present a case study motivated by the power grid, with communication constraints, actuator saturation, disturbances, and changing setpoints. This simple but challenging case study necessitates the use of model predictive control (MPC); however, standard MPC techniques often scales poorly to large systems and incurs heavy computational burden. To address this challenge, we combine two SLS-based controllers to form a layered MPC-like controller. Our controller has constant computational complexity with respect to the system size, gives a 20-fold reduction in online computation requirements, and still achieves performance that is within 3% of the centralized MPC controller.Comment: To appear in 2021 IEEE American Control Conference (ACC

    Graph Neural Networks for Distributed Linear-Quadratic Control

    Full text link
    The linear-quadratic controller is one of the fundamental problems in control theory. The optimal solution is a linear controller that requires access to the state of the entire system at any given time. When considering a network system, this renders the optimal controller a centralized one. The interconnected nature of a network system often demands a distributed controller, where different components of the system are controlled based only on local information. Unlike the classical centralized case, obtaining the optimal distributed controller is usually an intractable problem. Thus, we adopt a graph neural network (GNN) as a parametrization of distributed controllers. GNNs are naturally local and have distributed architectures, making them well suited for learning nonlinear distributed controllers. By casting the linear-quadratic problem as a self-supervised learning problem, we are able to find the best GNN-based distributed controller. We also derive sufficient conditions for the resulting closed-loop system to be stable. We run extensive simulations to study the performance of GNN-based distributed controllers and showcase that they are a computationally efficient parametrization with scalability and transferability capabilities.Comment: Submitted to 3rd Annual Learning for Dynamics and Control Conference (L4DC 2021

    Learning the Globally Optimal Distributed LQ Regulator

    Full text link
    We study model-free learning methods for the output-feedback Linear Quadratic (LQ) control problem in finite-horizon subject to subspace constraints on the control policy. Subspace constraints naturally arise in the field of distributed control and present a significant challenge in the sense that standard model-based optimization and learning leads to intractable numerical programs in general. Building upon recent results in zeroth-order optimization, we establish model-free sample-complexity bounds for the class of distributed LQ problems where a local gradient dominance constant exists on any sublevel set of the cost function. %which admit a local gradient dominance constant valid on the sublevel set of the cost function. We prove that a fundamental class of distributed control problems - commonly referred to as Quadratically Invariant (QI) problems - as well as others possess this property. To the best of our knowledge, our result is the first sample-complexity bound guarantee on learning globally optimal distributed output-feedback control policies.Comment: Soon to appear in Proceedings of Machine Learning Research, Vol. 120. Presented at L4DC 202

    Learning Partially Observed Linear Dynamical Systems from Logarithmic Number of Samples

    Full text link
    In this work, we study the problem of learning partially observed linear dynamical systems from a single sample trajectory. A major practical challenge in the existing system identification methods is the undesirable dependency of their required sample size on the system dimension: roughly speaking, they presume and rely on sample sizes that scale linearly with respect to the system dimension. Evidently, in high-dimensional regime where the system dimension is large, it may be costly, if not impossible, to collect as many samples from the unknown system. In this paper, we will remedy this undesirable dependency on the system dimension by introducing an โ„“1\ell_1-regularized estimation method that can accurately estimate the Markov parameters of the system, provided that the number of samples scale logarithmically with the system dimension. Our result significantly improves the sample complexity of learning partially observed linear dynamical systems: it shows that the Markov parameters of the system can be learned in the high-dimensional setting, where the number of samples is significantly smaller than the system dimension. Traditionally, the โ„“1\ell_1-regularized estimators have been used to promote sparsity in the estimated parameters. By resorting to the notion of "weak sparsity", we show that, irrespective of the true sparsity of the system, a similar regularized estimator can be used to reduce the sample complexity of learning partially observed linear systems, provided that the true system is inherently stable

    Synthesizing Decentralized Controllers with Graph Neural Networks and Imitation Learning

    Full text link
    Dynamical systems consisting of a set of autonomous agents face the challenge of having to accomplish a global task, relying only on local information. While centralized controllers are readily available, they face limitations in terms of scalability and implementation, as they do not respect the distributed information structure imposed by the network system of agents. Given the difficulties in finding optimal decentralized controllers, we propose a novel framework using graph neural networks (GNNs) to learn these controllers. GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties. We show that GNNs learn appropriate decentralized controllers by means of imitation learning, leverage their permutation invariance properties to successfully scale to larger teams and transfer to unseen scenarios at deployment time. The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers
    corecore