2,084 research outputs found

    Efficient Learning of Sparse Conditional Random Fields for Supervised Sequence Labelling

    Full text link
    Conditional Random Fields (CRFs) constitute a popular and efficient approach for supervised sequence labelling. CRFs can cope with large description spaces and can integrate some form of structural dependency between labels. In this contribution, we address the issue of efficient feature selection for CRFs based on imposing sparsity through an L1 penalty. We first show how sparsity of the parameter set can be exploited to significantly speed up training and labelling. We then introduce coordinate descent parameter update schemes for CRFs with L1 regularization. We finally provide some empirical comparisons of the proposed approach with state-of-the-art CRF training strategies. In particular, it is shown that the proposed approach is able to take profit of the sparsity to speed up processing and hence potentially handle larger dimensional models

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Efficient Multi-Template Learning for Structured Prediction

    Full text link
    Conditional random field (CRF) and Structural Support Vector Machine (Structural SVM) are two state-of-the-art methods for structured prediction which captures the interdependencies among output variables. The success of these methods is attributed to the fact that their discriminative models are able to account for overlapping features on the whole input observations. These features are usually generated by applying a given set of templates on labeled data, but improper templates may lead to degraded performance. To alleviate this issue, in this paper, we propose a novel multiple template learning paradigm to learn structured prediction and the importance of each template simultaneously, so that hundreds of arbitrary templates could be added into the learning model without caution. This paradigm can be formulated as a special multiple kernel learning problem with exponential number of constraints. Then we introduce an efficient cutting plane algorithm to solve this problem in the primal, and its convergence is presented. We also evaluate the proposed learning paradigm on two widely-studied structured prediction tasks, \emph{i.e.} sequence labeling and dependency parsing. Extensive experimental results show that the proposed method outperforms CRFs and Structural SVMs due to exploiting the importance of each template. Our complexity analysis and empirical results also show that our proposed method is more efficient than OnlineMKL on very sparse and high-dimensional data. We further extend this paradigm for structured prediction using generalized pp-block norm regularization with p>1p>1, and experiments show competitive performances when p∈[1,2)p \in [1,2)

    Scene Graph Generation via Conditional Random Fields

    Full text link
    Despite the great success object detection and segmentation models have achieved in recognizing individual objects in images, performance on cognitive tasks such as image caption, semantic image retrieval, and visual QA is far from satisfactory. To achieve better performance on these cognitive tasks, merely recognizing individual object instances is insufficient. Instead, the interactions between object instances need to be captured in order to facilitate reasoning and understanding of the visual scenes in an image. Scene graph, a graph representation of images that captures object instances and their relationships, offers a comprehensive understanding of an image. However, existing techniques on scene graph generation fail to distinguish subjects and objects in the visual scenes of images and thus do not perform well with real-world datasets where exist ambiguous object instances. In this work, we propose a novel scene graph generation model for predicting object instances and its corresponding relationships in an image. Our model, SG-CRF, learns the sequential order of subject and object in a relationship triplet, and the semantic compatibility of object instance nodes and relationship nodes in a scene graph efficiently. Experiments empirically show that SG-CRF outperforms the state-of-the-art methods, on three different datasets, i.e., CLEVR, VRD, and Visual Genome, raising the Recall@100 from 24.99% to 49.95%, from 41.92% to 50.47%, and from 54.69% to 54.77%, respectively

    ImageSpirit: Verbal Guided Image Parsing

    Get PDF
    Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images versus their typical representation is the goal of image parsing, which involves assigning object and attribute labels to pixel. In this paper we propose treating nouns as object labels and adjectives as visual attribute labels. This allows us to formulate the image parsing problem as one of jointly estimating per-pixel object and attribute labels from a set of training images. We propose an efficient (interactive time) solution. Using the extracted labels as handles, our system empowers a user to verbally refine the results. This enables hands-free parsing of an image into pixel-wise object/attribute labels that correspond to human semantics. Verbally selecting objects of interests enables a novel and natural interaction modality that can possibly be used to interact with new generation devices (e.g. smart phones, Google Glass, living room devices). We demonstrate our system on a large number of real-world images with varying complexity. To help understand the tradeoffs compared to traditional mouse based interactions, results are reported for both a large scale quantitative evaluation and a user study.Comment: http://mmcheng.net/imagespirit
    • …
    corecore