2 research outputs found

    Affine projection algorithm based adaptive control scheme for operation of variable-speed wind generator

    Get PDF
    This study presents a novel adaptive control scheme for variable-speed wind turbine (VSWT) driven permanent magnet synchronous generator (PMSG) to ensure its operation under different operating conditions. The adaptive control scheme is based on the affine projection algorithm (APA) which provides a faster convergence and less computational complexity than the least-mean-square algorithm. The proposed adaptive controller is used to control both the generator-side converter and the grid-side inverter without giving additional tuning efforts. Each vector control scheme for the converter/inverter has four APA-based adaptive proportional-integral (PI) controllers. Detailed modelling and the control strategies of the system under study are demonstrated. Real wind speed data extracted from Hokkaido island, Japan is used in this study. The dynamic characteristics of a grid-connected VSWT-PMSG are investigated in details to ensure the proposed controller operation under different operating conditions. The effectiveness of the proposed adaptive controller is compared with that obtained using optimised PI controllers by Taguchi method. The validity of the adaptive vector control scheme is verified by the simulation results which are performed using PSCAD/EMTDC environment

    TO ENLARGE THE EFFECTIVENESS ACROSS PHOTOVOLTAIC POWER PLANTS WITH CAPACITOR AUGMENT SYSTEM

    Get PDF
    This paper presents a unique application of continuous mixed -norm (CMPN) algorithm-based adaptive management strategy with the aim of enhancing the low voltage ride through (LVRT) the capability of grid-connected electrical phenomenon (PV) power plants. The PV arrays are connected to the purpose of common coupling through a DC-DC boost converter, a DC-link capacitor, a grid side inverter, and a three-phase step up transformer. The DC-DC converter is used for a maximum power point tracking operation based on the fractional open circuit voltage method. The grid-side inverter is utilized to control the DC-link voltage and terminal voltage at the PCC through a vector control scheme. The CMPN algorithm-based adaptive proportional-integral (PI) controller is used to control the power electronic circuits due to its very fast convergence. The proposed algorithm updates the PI controller gains online without the need to fine tune or optimize. The effectiveness of the proposed control strategy is compared with that obtained using Taguchi approach- based an optimal PI controller taking into account subjecting the system to symmetrical, unsymmetrical faults, and unsuccessful reclosing of circuit breakers due to the existence of the permanent fault
    corecore