901,214 research outputs found

    Statistical structures for internet-scale data management

    Get PDF
    Efficient query processing in traditional database management systems relies on statistics on base data. For centralized systems, there is a rich body of research results on such statistics, from simple aggregates to more elaborate synopses such as sketches and histograms. For Internet-scale distributed systems, on the other hand, statistics management still poses major challenges. With the work in this paper we aim to endow peer-to-peer data management over structured overlays with the power associated with such statistical information, with emphasis on meeting the scalability challenge. To this end, we first contribute efficient, accurate, and decentralized algorithms that can compute key aggregates such as Count, CountDistinct, Sum, and Average. We show how to construct several types of histograms, such as simple Equi-Width, Average-Shifted Equi-Width, and Equi-Depth histograms. We present a full-fledged open-source implementation of these tools for distributed statistical synopses, and report on a comprehensive experimental performance evaluation, evaluating our contributions in terms of efficiency, accuracy, and scalability

    Accurate and efficient surface reconstruction from volume fraction data on general meshes

    Get PDF
    Simulations involving free surfaces and fluid interfaces are important in many areas of engineering. There is, however, still a need for improved simulation methods. Recently, a new efficient geometric VOF method called isoAdvector for general polyhedral meshes was published. We investigate the interface reconstruction step of isoAdvector, and demonstrate that especially for unstructured meshes the applied isosurface based approach can lead to noisy interface orientations. We then introduce a novel computational interface reconstruction scheme based on calculation of a reconstructed distance function (RDF). By iterating over the RDF calculation and interface reconstruction, we obtain second order convergence of both the interface normal and position within cells even with a strict LL_{\infty} error norm. In 2D this is verified with reconstruction of a circle on Cartesian meshes and on unstructured triangular and polygonal prism meshes. In 3D the second order convergence is verified with reconstruction of a sphere on Cartesian meshes and on unstructured tetrahedral and polyhedral meshes. The new scheme is combined with the interface advection step of the isoAdvector algorithm. Significantly reduced absolute advection errors are obtained, and for CFL number 0.2 and below we demonstrate second order convergence on all the mentioned mesh types in 2D and 3D. The implementation of the proposed interface reconstruction schemes is straightforward and the computational cost is significantly reduced compared to contemporary methods. The schemes are implemented as an extension to the Computational Fluid Dynamics (CFD) Open Source software package, OpenFOAM. The extension module and all test cases presented in this paper are released as open source

    BLOOM’S TAXONOMY REVISED ASPECT ON VISUALIZER AND VERBALIZER’S PROBLEM SOLVING

    Get PDF
    The ability to solve problems is a part of learning mathematics that is very important. Problem solving prefers the processes and strategies undertaken by students in solving problems rather than results. The concept of learning corresponds to the stages in the bloom’s taxonomy revised. The Bloom’s Taxonomy revised has two dimensions, namely the dimensions of the cognitive process and the knowledge dimension. The knowledge dimension has four categories, but this research is only limited to procedural knowledge. The dimensions of cognitive processes are categorized into six types, namely remembering, understanding, applying, analyzing, evaluating, and creating. Learning implementation emphasizes the role of students. In addition, implementation must be balanced with the appropriate tools. In this study, the tools used were open-ended problems. This study aims to provide an overview of how open ended problem can help improve students mathematical abilities through a Bloom’s Taxonomy revised. The results of the study stated that students with visualizer cognitive style had more effective and efficient steps in solving problems well. It shows how it can create a problem from the open ended problem that is given. This can be a teachers consideration in teaching, so that students can get the open ended problem. Keywords: Problem Solving, Bloom’s Taxonomy Revised, Visualizer, Verbalizer

    Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions

    Get PDF
    This thesis describes a Byzantine fault tolerant coordination framework for Web services atomic transactions. In the framework, all core services, including transaction activation, registration, completion, and distributed commit, are replicated and protected by Byzantine fault tolerance mechanisms. The traditional two-phase commit protocol is extended by a Byzantine fault tolerant version that can tolerate arbitrary faults on the coordinator and the initiator sides, and some types of malicious faults on the participant side. To achieve Byzantine fault tolerance in an efficient manner, and to limit the types of malicious behaviors of the coordinator, a novel decision certificate is introduced. The decision certificate includes a signed copy of the participants\u27 vote records, and it is piggybacked with all decision notifications to the participants for each participant to verify the legitimacy of the decision. The Byzantine fault tolerance mechanisms, together with the extended two-phase commit protocol, have been incorporated into an open-source framework supporting the standard Web services atomic transactions specification. Performance characterizations of the framework show that the implementation is fairly efficient. Such a Byzantine fault tolerant coordination framework can be useful for many transactional Web services that require a high degree of security and dependabilit

    Byzantine Fault Tolerant Coordination for Web Services Atomic Transactions

    Get PDF
    This thesis describes a Byzantine fault tolerant coordination framework for Web services atomic transactions. In the framework, all core services, including transaction activation, registration, completion, and distributed commit, are replicated and protected by Byzantine fault tolerance mechanisms. The traditional two-phase commit protocol is extended by a Byzantine fault tolerant version that can tolerate arbitrary faults on the coordinator and the initiator sides, and some types of malicious faults on the participant side. To achieve Byzantine fault tolerance in an efficient manner, and to limit the types of malicious behaviors of the coordinator, a novel decision certificate is introduced. The decision certificate includes a signed copy of the participants\u27 vote records, and it is piggybacked with all decision notifications to the participants for each participant to verify the legitimacy of the decision. The Byzantine fault tolerance mechanisms, together with the extended two-phase commit protocol, have been incorporated into an open-source framework supporting the standard Web services atomic transactions specification. Performance characterizations of the framework show that the implementation is fairly efficient. Such a Byzantine fault tolerant coordination framework can be useful for many transactional Web services that require a high degree of security and dependabilit

    The Investigation of Efficiency of Physical Phenomena Modelling Using Differential Equations on Distributed Systems

    Get PDF
    This work is dedicated to development of mathematical modelling software. In this dissertation numerical methods and algorithms are investigated in software making context. While applying a numerical method it is important to take into account the limited computer resources, the architecture of these resources and how do methods affect software robustness. Three main aspects of this investigation are that software implementation must be efficient, robust and be able to utilize specific hardware resources. The hardware specificity in this work is related to distributed computations of different types: single CPU with multiple cores, multiple CPUs with multiple cores and highly parallel multithreaded GPU device. The investigation is done in three directions: GPU usage for 3D FDTD calculations, FVM method usage to implement efficient calculations of a very specific heat transferring problem, and development of special techniques for software for specific bacteria self organization problem when the results are sensitive to numerical methods, initial data and even computer round-off errors. All these directions are dedicated to create correct technological components that make a software implementation robust and efficient. The time prediction model for 3D FDTD calculations is proposed, which lets to evaluate the efficiency of different GPUs. A reasonable speedup with GPU comparing to CPU is obtained. For FVM implementation the OpenFOAM open source software is selected as a basis for implementation of calculations and a few algorithms and their modifications to solve efficiency issues are proposed. The FVM parallel solver is implemented and analyzed, it is adapted to heterogeneous cluster Vilkas. To create robust software for simulation of bacteria self organization mathematically robust methods are applied and results are analyzed, the algorithm is modified for parallel computations
    corecore