378 research outputs found

    Semiparametric posterior limits

    Full text link
    We review the Bayesian theory of semiparametric inference following Bickel and Kleijn (2012) and Kleijn and Knapik (2013). After an overview of efficiency in parametric and semiparametric estimation problems, we consider the Bernstein-von Mises theorem (see, e.g., Le Cam and Yang (1990)) and generalize it to (LAN) regular and (LAE) irregular semiparametric estimation problems. We formulate a version of the semiparametric Bernstein-von Mises theorem that does not depend on least-favourable submodels, thus bypassing the most restrictive condition in the presentation of Bickel and Kleijn (2012). The results are applied to the (regular) estimation of the linear coefficient in partial linear regression (with a Gaussian nuisance prior) and of the kernel bandwidth in a model of normal location mixtures (with a Dirichlet nuisance prior), as well as the (irregular) estimation of the boundary of the support of a monotone family of densities (with a Gaussian nuisance prior).Comment: 47 pp., 1 figure, submitted for publication. arXiv admin note: substantial text overlap with arXiv:1007.017

    The semiparametric Bernstein-von Mises theorem

    Get PDF
    In a smooth semiparametric estimation problem, the marginal posterior for the parameter of interest is expected to be asymptotically normal and satisfy frequentist criteria of optimality if the model is endowed with a suitable prior. It is shown that, under certain straightforward and interpretable conditions, the assertion of Le Cam's acclaimed, but strictly parametric, Bernstein-von Mises theorem [Univ. California Publ. Statist. 1 (1953) 277-329] holds in the semiparametric situation as well. As a consequence, Bayesian point-estimators achieve efficiency, for example, in the sense of H\'{a}jek's convolution theorem [Z. Wahrsch. Verw. Gebiete 14 (1970) 323-330]. The model is required to satisfy differentiability and metric entropy conditions, while the nuisance prior must assign nonzero mass to certain Kullback-Leibler neighborhoods [Ghosal, Ghosh and van der Vaart Ann. Statist. 28 (2000) 500-531]. In addition, the marginal posterior is required to converge at parametric rate, which appears to be the most stringent condition in examples. The results are applied to estimation of the linear coefficient in partial linear regression, with a Gaussian prior on a smoothness class for the nuisance.Comment: Published in at http://dx.doi.org/10.1214/11-AOS921 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic Properties for Methods Combining Minimum Hellinger Distance Estimates and Bayesian Nonparametric Density Estimates

    Get PDF
    In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficienty when the parametric model is correct. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density from a random histogram prior; the other induces a posterior over parameters through the posterior for the random histogram. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramer-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator indicating that it's posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold

    Building and using semiparametric tolerance regions for parametric multinomial models

    Full text link
    We introduce a semiparametric ``tubular neighborhood'' of a parametric model in the multinomial setting. It consists of all multinomial distributions lying in a distance-based neighborhood of the parametric model of interest. Fitting such a tubular model allows one to use a parametric model while treating it as an approximation to the true distribution. In this paper, the Kullback--Leibler distance is used to build the tubular region. Based on this idea one can define the distance between the true multinomial distribution and the parametric model to be the index of fit. The paper develops a likelihood ratio test procedure for testing the magnitude of the index. A semiparametric bootstrap method is implemented to better approximate the distribution of the LRT statistic. The approximation permits more accurate construction of a lower confidence limit for the model fitting index.Comment: Published in at http://dx.doi.org/10.1214/08-AOS603 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Tailor-made tests for goodness of fit to semiparametric hypotheses

    Full text link
    We introduce a new framework for constructing tests of general semiparametric hypotheses which have nontrivial power on the n1/2n^{-1/2} scale in every direction, and can be tailored to put substantial power on alternatives of importance. The approach is based on combining test statistics based on stochastic processes of score statistics with bootstrap critical values.Comment: Published at http://dx.doi.org/10.1214/009053606000000137 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sensitivity Analysis in Semiparametric Likelihood Models

    Get PDF
    We provide methods for inference on a finite dimensional parameter of interest, θ in Re ^{ d _θ}, in a semiparametric probability model when an infinite dimensional nuisance parameter, g , is present. We depart from the semiparametric literature in that we do not require that the pair (θ, g ) is point identified and so we construct confidence regions for θ that are robust to non-point identification. This allows practitioners to examine the sensitivity of their estimates of θ to specification of g in a likelihood setup. To construct these confidence regions for θ, we invert a profiled sieve likelihood ratio (LR) statistic. We derive the asymptotic null distribution of this profiled sieve LR, which is nonstandard when θ is not point identified (but is χ 2 distributed under point identification). We show that a simple weighted bootstrap procedure consistently estimates this complicated distribution’s quantiles. Monte Carlo studies of a semiparametric dynamic binary response panel data model indicate that our weighted bootstrap procedures performs adequately in finite samples. We provide three empirical illustrations to contrast our procedure to the ones obtained using standard (less robust) methods
    corecore