262,802 research outputs found

    Inferring Hierarchical Structure in Multi-Room Maze Environments

    Full text link
    Cognitive maps play a crucial role in facilitating flexible behaviour by representing spatial and conceptual relationships within an environment. The ability to learn and infer the underlying structure of the environment is crucial for effective exploration and navigation. This paper introduces a hierarchical active inference model addressing the challenge of inferring structure in the world from pixel-based observations. We propose a three-layer hierarchical model consisting of a cognitive map, an allocentric, and an egocentric world model, combining curiosity-driven exploration with goal-oriented behaviour at the different levels of reasoning from context to place to motion. This allows for efficient exploration and goal-directed search in room-structured mini-grid environments.Comment: ICML 2023 Worksho

    Model-based Reinforcement Learning with Parametrized Physical Models and Optimism-Driven Exploration

    Full text link
    In this paper, we present a robotic model-based reinforcement learning method that combines ideas from model identification and model predictive control. We use a feature-based representation of the dynamics that allows the dynamics model to be fitted with a simple least squares procedure, and the features are identified from a high-level specification of the robot's morphology, consisting of the number and connectivity structure of its links. Model predictive control is then used to choose the actions under an optimistic model of the dynamics, which produces an efficient and goal-directed exploration strategy. We present real time experimental results on standard benchmark problems involving the pendulum, cartpole, and double pendulum systems. Experiments indicate that our method is able to learn a range of benchmark tasks substantially faster than the previous best methods. To evaluate our approach on a realistic robotic control task, we also demonstrate real time control of a simulated 7 degree of freedom arm.Comment: 8 page

    Learning Augmented, Multi-Robot Long-Horizon Navigation in Partially Mapped Environments

    Full text link
    We present a novel approach for efficient and reliable goal-directed long-horizon navigation for a multi-robot team in a structured, unknown environment by predicting statistics of unknown space. Building on recent work in learning-augmented model based planning under uncertainty, we introduce a high-level state and action abstraction that lets us approximate the challenging Dec-POMDP into a tractable stochastic MDP. Our Multi-Robot Learning over Subgoals Planner (MR-LSP) guides agents towards coordinated exploration of regions more likely to reach the unseen goal. We demonstrate improvement in cost against other multi-robot strategies; in simulated office-like environments, we show that our approach saves 13.29% (2 robot) and 4.6% (3 robot) average cost versus standard non-learned optimistic planning and a learning-informed baseline.Comment: 7 pages, 7 figures, ICRA202

    Learning action-oriented models through active inference

    Get PDF
    Converging theories suggest that organisms learn and exploit probabilistic models of their environment. However, it remains unclear how such models can be learned in practice. The open-ended complexity of natural environments means that it is generally infeasible for organisms to model their environment comprehensively. Alternatively, action-oriented models attempt to encode a parsimonious representation of adaptive agent-environment interactions. One approach to learning action-oriented models is to learn online in the presence of goal-directed behaviours. This constrains an agent to behaviourally relevant trajectories, reducing the diversity of the data a model need account for. Unfortunately, this approach can cause models to prematurely converge to sub-optimal solutions, through a process we refer to as a bad-bootstrap. Here, we exploit the normative framework of active inference to show that efficient action-oriented models can be learned by balancing goal-oriented and epistemic (information-seeking) behaviours in a principled manner. We illustrate our approach using a simple agent-based model of bacterial chemotaxis. We first demonstrate that learning via goal-directed behaviour indeed constrains models to behaviorally relevant aspects of the environment, but that this approach is prone to sub-optimal convergence. We then demonstrate that epistemic behaviours facilitate the construction of accurate and comprehensive models, but that these models are not tailored to any specific behavioural niche and are therefore less efficient in their use of data. Finally, we show that active inference agents learn models that are parsimonious, tailored to action, and which avoid bad bootstraps and sub-optimal convergence. Critically, our results indicate that models learned through active inference can support adaptive behaviour in spite of, and indeed because of, their departure from veridical representations of the environment. Our approach provides a principled method for learning adaptive models from limited interactions with an environment, highlighting a route to sample efficient learning algorithms
    • …
    corecore