705 research outputs found

    List Decoding Tensor Products and Interleaved Codes

    Full text link
    We design the first efficient algorithms and prove new combinatorial bounds for list decoding tensor products of codes and interleaved codes. We show that for {\em every} code, the ratio of its list decoding radius to its minimum distance stays unchanged under the tensor product operation (rather than squaring, as one might expect). This gives the first efficient list decoders and new combinatorial bounds for some natural codes including multivariate polynomials where the degree in each variable is bounded. We show that for {\em every} code, its list decoding radius remains unchanged under mm-wise interleaving for an integer mm. This generalizes a recent result of Dinur et al \cite{DGKS}, who proved such a result for interleaved Hadamard codes (equivalently, linear transformations). Using the notion of generalized Hamming weights, we give better list size bounds for {\em both} tensoring and interleaving of binary linear codes. By analyzing the weight distribution of these codes, we reduce the task of bounding the list size to bounding the number of close-by low-rank codewords. For decoding linear transformations, using rank-reduction together with other ideas, we obtain list size bounds that are tight over small fields.Comment: 32 page

    Iterative Algebraic Soft-Decision List Decoding of Reed-Solomon Codes

    Get PDF
    In this paper, we present an iterative soft-decision decoding algorithm for Reed-Solomon codes offering both complexity and performance advantages over previously known decoding algorithms. Our algorithm is a list decoding algorithm which combines two powerful soft decision decoding techniques which were previously regarded in the literature as competitive, namely, the Koetter-Vardy algebraic soft-decision decoding algorithm and belief-propagation based on adaptive parity check matrices, recently proposed by Jiang and Narayanan. Building on the Jiang-Narayanan algorithm, we present a belief-propagation based algorithm with a significant reduction in computational complexity. We introduce the concept of using a belief-propagation based decoder to enhance the soft-input information prior to decoding with an algebraic soft-decision decoder. Our algorithm can also be viewed as an interpolation multiplicity assignment scheme for algebraic soft-decision decoding of Reed-Solomon codes.Comment: Submitted to IEEE for publication in Jan 200

    Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix

    Full text link
    An iterative algorithm is presented for soft-input-soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard decision decoding (HDD) and compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on Information Theor
    • …
    corecore