4,493 research outputs found

    Multi-threading a state-of-the-art maximum clique algorithm

    Get PDF
    We present a threaded parallel adaptation of a state-of-the-art maximum clique algorithm for dense, computationally challenging graphs. We show that near-linear speedups are achievable in practice and that superlinear speedups are common. We include results for several previously unsolved benchmark problems

    Multipoint secant and interpolation methods with nonmonotone line search for solving systems of nonlinear equations

    Full text link
    Multipoint secant and interpolation methods are effective tools for solving systems of nonlinear equations. They use quasi-Newton updates for approximating the Jacobian matrix. Owing to their ability to more completely utilize the information about the Jacobian matrix gathered at the previous iterations, these methods are especially efficient in the case of expensive functions. They are known to be local and superlinearly convergent. We combine these methods with the nonmonotone line search proposed by Li and Fukushima (2000), and study global and superlinear convergence of this combination. Results of numerical experiments are presented. They indicate that the multipoint secant and interpolation methods tend to be more robust and efficient than Broyden's method globalized in the same way

    A Simple and Efficient Algorithm for Nonlinear Model Predictive Control

    Full text link
    We present PANOC, a new algorithm for solving optimal control problems arising in nonlinear model predictive control (NMPC). A usual approach to this type of problems is sequential quadratic programming (SQP), which requires the solution of a quadratic program at every iteration and, consequently, inner iterative procedures. As a result, when the problem is ill-conditioned or the prediction horizon is large, each outer iteration becomes computationally very expensive. We propose a line-search algorithm that combines forward-backward iterations (FB) and Newton-type steps over the recently introduced forward-backward envelope (FBE), a continuous, real-valued, exact merit function for the original problem. The curvature information of Newton-type methods enables asymptotic superlinear rates under mild assumptions at the limit point, and the proposed algorithm is based on very simple operations: access to first-order information of the cost and dynamics and low-cost direct linear algebra. No inner iterative procedure nor Hessian evaluation is required, making our approach computationally simpler than SQP methods. The low-memory requirements and simple implementation make our method particularly suited for embedded NMPC applications

    Computing Least Fixed Points of Probabilistic Systems of Polynomials

    Get PDF
    We study systems of equations of the form X1 = f1(X1, ..., Xn), ..., Xn = fn(X1, ..., Xn), where each fi is a polynomial with nonnegative coefficients that add up to 1. The least nonnegative solution, say mu, of such equation systems is central to problems from various areas, like physics, biology, computational linguistics and probabilistic program verification. We give a simple and strongly polynomial algorithm to decide whether mu=(1, ..., 1) holds. Furthermore, we present an algorithm that computes reliable sequences of lower and upper bounds on mu, converging linearly to mu. Our algorithm has these features despite using inexact arithmetic for efficiency. We report on experiments that show the performance of our algorithms.Comment: Published in the Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS). Technical Report is also available via arxiv.or
    • …
    corecore