43,750 research outputs found

    A Distributed Security Architecture for Large Scale Systems

    Get PDF
    This thesis describes the research leading from the conception, through development, to the practical implementation of a comprehensive security architecture for use within, and as a value-added enhancement to, the ISO Open Systems Interconnection (OSI) model. The Comprehensive Security System (CSS) is arranged basically as an Application Layer service but can allow any of the ISO recommended security facilities to be provided at any layer of the model. It is suitable as an 'add-on' service to existing arrangements or can be fully integrated into new applications. For large scale, distributed processing operations, a network of security management centres (SMCs) is suggested, that can help to ensure that system misuse is minimised, and that flexible operation is provided in an efficient manner. The background to the OSI standards are covered in detail, followed by an introduction to security in open systems. A survey of existing techniques in formal analysis and verification is then presented. The architecture of the CSS is described in terms of a conceptual model using agents and protocols, followed by an extension of the CSS concept to a large scale network controlled by SMCs. A new approach to formal security analysis is described which is based on two main methodologies. Firstly, every function within the system is built from layers of provably secure sequences of finite state machines, using a recursive function to monitor and constrain the system to the desired state at all times. Secondly, the correctness of the protocols generated by the sequences to exchange security information and control data between agents in a distributed environment, is analysed in terms of a modified temporal Hoare logic. This is based on ideas concerning the validity of beliefs about the global state of a system as a result of actions performed by entities within the system, including the notion of timeliness. The two fundamental problems in number theory upon which the assumptions about the security of the finite state machine model rest are described, together with a comprehensive survey of the very latest progress in this area. Having assumed that the two problems will remain computationally intractable in the foreseeable future, the method is then applied to the formal analysis of some of the components of the Comprehensive Security System. A practical implementation of the CSS has been achieved as a demonstration system for a network of IBM Personal Computers connected via an Ethernet LAN, which fully meets the aims and objectives set out in Chapter 1. This implementation is described, and finally some comments are made on the possible future of research into security aspects of distributed systems.IBM (United Kingdom) Laboratories Hursley Park, Winchester, U

    Universally-composable finite-key analysis for efficient four-intensity decoy-state quantum key distribution

    Full text link
    We propose an efficient four-intensity decoy-state BB84 protocol and derive concise security bounds for this protocol with the universally composable finite-key analysis method. Comparing with the efficient three-intensity protocol, we find that our efficient four-intensity protocol can increase the secret key rate by at least 30%30\%. Particularly, this increasing rate of secret key rate will be raised as the transmission distance increases. At a large transmission distance, our efficient four-intensity protocol can improve the performance of quantum key distribution profoundly.Comment: accepted by Eur. Phys. J.

    Proof Theory, Transformations, and Logic Programming for Debugging Security Protocols

    Get PDF
    We define a sequent calculus to formally specify, simulate, debug and verify security protocols. In our sequents we distinguish between the current knowledge of principals and the current global state of the session. Hereby, we can describe the operational semantics of principals and of an intruder in a simple and modular way. Furthermore, using proof theoretic tools like the analysis of permutability of rules, we are able to find efficient proof strategies that we prove complete for special classes of security protocols including Needham-Schroeder. Based on the results of this preliminary analysis, we have implemented a Prolog meta-interpreter which allows for rapid prototyping and for checking safety properties of security protocols, and we have applied it for finding error traces and proving correctness of practical examples

    Finite-key security analysis for multilevel quantum key distribution

    Get PDF
    We present a detailed security analysis of a d-dimensional quantum key distribution protocol based on two and three mutually unbiased bases (MUBs) both in an asymptotic and finite key length scenario. The finite secret key rates are calculated as a function of the length of the sifted key by (i) generalizing the uncertainly relation-based insight from BB84 to any d-level 2-MUB QKD protocol and (ii) by adopting recent advances in the second-order asymptotics for finite block length quantum coding (for both d-level 2- and 3-MUB QKD protocols). Since the finite and asymptotic secret key rates increase with d and the number of MUBs (together with the tolerable threshold) such QKD schemes could in principle offer an important advantage over BB84. We discuss the possibility of an experimental realization of the 3-MUB QKD protocol with the orbital angular momentum degrees of freedom of photons.Comment: v4: close to the published versio

    Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations

    Full text link
    The ability to distribute secret keys between two parties with information-theoretic security, that is, regardless of the capacities of a malevolent eavesdropper, is one of the most celebrated results in the field of quantum information processing and communication. Indeed, quantum key distribution illustrates the power of encoding information on the quantum properties of light and has far reaching implications in high-security applications. Today, quantum key distribution systems operate in real-world conditions and are commercially available. As with most quantum information protocols, quantum key distribution was first designed for qubits, the individual quanta of information. However, the use of quantum continuous variables for this task presents important advantages with respect to qubit based protocols, in particular from a practical point of view, since it allows for simple implementations that require only standard telecommunication technology. In this review article, we describe the principle of continuous-variable quantum key distribution, focusing in particular on protocols based on coherent states. We discuss the security of these protocols and report on the state-of-the-art in experimental implementations, including the issue of side-channel attacks. We conclude with promising perspectives in this research field.Comment: 21 pages, 2 figures, 1 tabl

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Security Analysis of an Untrusted Source for Quantum Key Distribution: Passive Approach

    Get PDF
    We present a passive approach to the security analysis of quantum key distribution (QKD) with an untrusted source. A complete proof of its unconditional security is also presented. This scheme has significant advantages in real-life implementations as it does not require fast optical switching or a quantum random number generator. The essential idea is to use a beam splitter to split each input pulse. We show that we can characterize the source using a cross-estimate technique without active routing of each pulse. We have derived analytical expressions for the passive estimation scheme. Moreover, using simulations, we have considered four real-life imperfections: Additional loss introduced by the "plug & play" structure, inefficiency of the intensity monitor, noise of the intensity monitor, and statistical fluctuation introduced by finite data size. Our simulation results show that the passive estimate of an untrusted source remains useful in practice, despite these four imperfections. Also, we have performed preliminary experiments, confirming the utility of our proposal in real-life applications. Our proposal makes it possible to implement the "plug & play" QKD with the security guaranteed, while keeping the implementation practical.Comment: 35 pages, 19 figures. Published Versio
    corecore