2 research outputs found

    A Note on the Practicality of Maximal Planar Subgraph Algorithms

    Full text link
    Given a graph GG, the NP-hard Maximum Planar Subgraph problem (MPS) asks for a planar subgraph of GG with the maximum number of edges. There are several heuristic, approximative, and exact algorithms to tackle the problem, but---to the best of our knowledge---they have never been compared competitively in practice. We report on an exploratory study on the relative merits of the diverse approaches, focusing on practical runtime, solution quality, and implementation complexity. Surprisingly, a seemingly only theoretically strong approximation forms the building block of the strongest choice.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Efficient Extraction of Multiple Kuratowski Subdivisions

    Get PDF
    A graph is planar if and only if it does not contain a Kuratowski subdivision. Hence such a subdivision can be used as a witness for non-planarity. Modern planarity testing algorithms allow to extract a single such witness in linear time. We present the first linear time algorithm which is able to extract multiple Kuratowski subdivisions at once. This is of particular interest for, e.g., Branch-and-Cut algorithms which require multiple such subdivisions to generate cut constraints. The algorithm is not only described theoretically, but we also present an experimental study of its implementation
    corecore