5,185 research outputs found

    Ouroboros-E: An efficient Lattice-based Key-Exchange Protocol

    Get PDF
    The Bit Flipping algorithm is a hard decision decoding algorithm originally designed by Gallager in 1962 to decode Low Density Parity Check Codes (LDPC). It has recently proved to be much more versatile, for Moderate Parity Check Codes (MDPC) or Euclidean metric. We further demonstrate its power by proposing a noisy Euclidean version of it. This tweak allows to construct a lattice based key exchange analogous to the Ouroboros protocol for Hamming metric but with a reduction to the Short Integer Solution (SIS) problem. The very efficient decoding algorithm permits to consider smaller alphabets than for NTRU or Ring-LWE decryption algorithms. Overall we obtain a new protocol which competes with the recent NEWHOPE and Kyber proposals, and also with NTRU. The resulting scheme exploits the cyclicity of the error, and benefits from the security of the renowned SIS problem.acceptedVersio

    Iterative decoding for MIMO channels via modified sphere decoding

    Get PDF
    In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiantenna systems employing space-time codes, however, it is not clear what is the best way to obtain the soft information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm to estimate the maximum a posteriori probability of the received symbol sequence. The new algorithm solves a nonlinear integer least squares problem and, over a wide range of rates and signal-to-noise ratios, has polynomial-time complexity. Performance of the algorithm, combined with convolutional, turbo, and low-density parity check codes, is demonstrated on several multiantenna channels. The results for systems that employ space-time modulation schemes seem to indicate that the best performing schemes are those that support the highest mutual information between the transmitted and received signals, rather than the best diversity gain
    • …
    corecore