6,142 research outputs found

    Three-Way Joins on MapReduce: An Experimental Study

    Full text link
    We study three-way joins on MapReduce. Joins are very useful in a multitude of applications from data integration and traversing social networks, to mining graphs and automata-based constructions. However, joins are expensive, even for moderate data sets; we need efficient algorithms to perform distributed computation of joins using clusters of many machines. MapReduce has become an increasingly popular distributed computing system and programming paradigm. We consider a state-of-the-art MapReduce multi-way join algorithm by Afrati and Ullman and show when it is appropriate for use on very large data sets. By providing a detailed experimental study, we demonstrate that this algorithm scales much better than what is suggested by the original paper. However, if the join result needs to be summarized or aggregated, as opposed to being only enumerated, then the aggregation step can be integrated into a cascade of two-way joins, making it more efficient than the other algorithm, and thus becomes the preferred solution.Comment: 6 page

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    Instance and Output Optimal Parallel Algorithms for Acyclic Joins

    Full text link
    Massively parallel join algorithms have received much attention in recent years, while most prior work has focused on worst-optimal algorithms. However, the worst-case optimality of these join algorithms relies on hard instances having very large output sizes, which rarely appear in practice. A stronger notion of optimality is {\em output-optimal}, which requires an algorithm to be optimal within the class of all instances sharing the same input and output size. An even stronger optimality is {\em instance-optimal}, i.e., the algorithm is optimal on every single instance, but this may not always be achievable. In the traditional RAM model of computation, the classical Yannakakis algorithm is instance-optimal on any acyclic join. But in the massively parallel computation (MPC) model, the situation becomes much more complicated. We first show that for the class of r-hierarchical joins, instance-optimality can still be achieved in the MPC model. Then, we give a new MPC algorithm for an arbitrary acyclic join with load O ({\IN \over p} + {\sqrt{\IN \cdot \OUT} \over p}), where \IN,\OUT are the input and output sizes of the join, and pp is the number of servers in the MPC model. This improves the MPC version of the Yannakakis algorithm by an O (\sqrt{\OUT \over \IN} ) factor. Furthermore, we show that this is output-optimal when \OUT = O(p \cdot \IN), for every acyclic but non-r-hierarchical join. Finally, we give the first output-sensitive lower bound for the triangle join in the MPC model, showing that it is inherently more difficult than acyclic joins

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use
    corecore