1,850 research outputs found

    Stable Recovery Of Sparse Vectors From Random Sinusoidal Feature Maps

    Full text link
    Random sinusoidal features are a popular approach for speeding up kernel-based inference in large datasets. Prior to the inference stage, the approach suggests performing dimensionality reduction by first multiplying each data vector by a random Gaussian matrix, and then computing an element-wise sinusoid. Theoretical analysis shows that collecting a sufficient number of such features can be reliably used for subsequent inference in kernel classification and regression. In this work, we demonstrate that with a mild increase in the dimension of the embedding, it is also possible to reconstruct the data vector from such random sinusoidal features, provided that the underlying data is sparse enough. In particular, we propose a numerically stable algorithm for reconstructing the data vector given the nonlinear features, and analyze its sample complexity. Our algorithm can be extended to other types of structured inverse problems, such as demixing a pair of sparse (but incoherent) vectors. We support the efficacy of our approach via numerical experiments

    On Conditions for Uniqueness in Sparse Phase Retrieval

    Full text link
    The phase retrieval problem has a long history and is an important problem in many areas of optics. Theoretical understanding of phase retrieval is still limited and fundamental questions such as uniqueness and stability of the recovered solution are not yet fully understood. This paper provides several additions to the theoretical understanding of sparse phase retrieval. In particular we show that if the measurement ensemble can be chosen freely, as few as 4k-1 phaseless measurements suffice to guarantee uniqueness of a k-sparse M-dimensional real solution. We also prove that 2(k^2-k+1) Fourier magnitude measurements are sufficient under rather general conditions

    Nonlinear Basis Pursuit

    Full text link
    In compressive sensing, the basis pursuit algorithm aims to find the sparsest solution to an underdetermined linear equation system. In this paper, we generalize basis pursuit to finding the sparsest solution to higher order nonlinear systems of equations, called nonlinear basis pursuit. In contrast to the existing nonlinear compressive sensing methods, the new algorithm that solves the nonlinear basis pursuit problem is convex and not greedy. The novel algorithm enables the compressive sensing approach to be used for a broader range of applications where there are nonlinear relationships between the measurements and the unknowns
    • …
    corecore