13,320 research outputs found

    Joint Power Splitting and Secure Beamforming Design in the Wireless-powered Untrusted Relay Networks

    Full text link
    In this work, we maximize the secrecy rate of the wireless-powered untrusted relay network by jointly designing power splitting (PS) ratio and relay beamforming with the proposed global optimal algorithm (GOA) and local optimal algorithm (LOA). Different from the literature, artificial noise (AN) sent by the destination not only degrades the channel condition of the eavesdropper to improve the secrecy rate, but also becomes a new source of energy powering the untrusted relay based on PS. Hence, it is of high economic benefits and efficiency to take advantage of AN compared with the literature. Simulation results show that LOA can achieve satisfactory secrecy rate performance compared with that of GOA, but with less computation time.Comment: Submitted to GlobeCom201

    Amplify-and-Forward in Wireless Relay Networks

    Full text link
    A general class of wireless relay networks with a single source-destination pair is considered. Intermediate nodes in the network employ an amplify-and-forward scheme to relay their input signals. In this case the overall input-output channel from the source via the relays to the destination effectively behaves as an intersymbol interference channel with colored noise. Unlike previous work we formulate the problem of the maximum achievable rate in this setting as an optimization problem with no assumption on the network size, topology, and received signal-to-noise ratio. Previous work considered only scenarios wherein relays use all their power to amplify their received signals. We demonstrate that this may not always maximize the maximal achievable rate in amplify-and-forward relay networks. The proposed formulation allows us to not only recover known results on the performance of the amplify-and-forward schemes for some simple relay networks but also characterize the performance of more complex amplify-and-forward relay networks which cannot be addressed in a straightforward manner using existing approaches. Using cut-set arguments, we derive simple upper bounds on the capacity of general wireless relay networks. Through various examples, we show that a large class of amplify-and-forward relay networks can achieve rates within a constant factor of these upper bounds asymptotically in network parameters.Comment: Minor revision: fixed a typo in eqn. reference, changed the formatting. 30 pages, 8 figure

    Joint Computation and Communication Cooperation for Mobile Edge Computing

    Full text link
    This paper proposes a novel joint computation and communication cooperation approach in mobile edge computing (MEC) systems, which enables user cooperation in both computation and communication for improving the MEC performance. In particular, we consider a basic three-node MEC system that consists of a user node, a helper node, and an access point (AP) node attached with an MEC server. We focus on the user's latency-constrained computation over a finite block, and develop a four-slot protocol for implementing the joint computation and communication cooperation. Under this setup, we jointly optimize the computation and communication resource allocation at both the user and the helper, so as to minimize their total energy consumption subject to the user's computation latency constraint. We provide the optimal solution to this problem. Numerical results show that the proposed joint cooperation approach significantly improves the computation capacity and the energy efficiency at the user and helper nodes, as compared to other benchmark schemes without such a joint design.Comment: 8 pages, 4 figure
    • …
    corecore