7,412 research outputs found

    Fault-tolerant routing in peer-to-peer systems

    Full text link
    We consider the problem of designing an overlay network and routing mechanism that permits finding resources efficiently in a peer-to-peer system. We argue that many existing approaches to this problem can be modeled as the construction of a random graph embedded in a metric space whose points represent resource identifiers, where the probability of a connection between two nodes depends only on the distance between them in the metric space. We study the performance of a peer-to-peer system where nodes are embedded at grid points in a simple metric space: a one-dimensional real line. We prove upper and lower bounds on the message complexity of locating particular resources in such a system, under a variety of assumptions about failures of either nodes or the connections between them. Our lower bounds in particular show that the use of inverse power-law distributions in routing, as suggested by Kleinberg (1999), is close to optimal. We also give efficient heuristics to dynamically maintain such a system as new nodes arrive and old nodes depart. Finally, we give experimental results that suggest promising directions for future work.Comment: Full version of PODC 2002 paper. New version corrects missing conditioning in Lemma 9 and some related details in the proof of Theorem 10, with no changes to main result

    Delay Performance and Mixing Times in Random-Access Networks

    Get PDF
    We explore the achievable delay performance in wireless random-access networks. While relatively simple and inherently distributed in nature, suitably designed queue-based random-access schemes provide the striking capability to match the optimal throughput performance of centralized scheduling mechanisms in a wide range of scenarios. The specific type of activation rules for which throughput optimality has been established, may however yield excessive queues and delays. Motivated by that issue, we examine whether the poor delay performance is inherent to the basic operation of these schemes, or caused by the specific kind of activation rules. We derive delay lower bounds for queue-based activation rules, which offer fundamental insight in the cause of the excessive delays. For fixed activation rates we obtain lower bounds indicating that delays and mixing times can grow dramatically with the load in certain topologies as well

    HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN Search in High-Dimensional Spaces

    Full text link
    Nearest neighbor searching of large databases in high-dimensional spaces is inherently difficult due to the curse of dimensionality. A flavor of approximation is, therefore, necessary to practically solve the problem of nearest neighbor search. In this paper, we propose a novel yet simple indexing scheme, HD-Index, to solve the problem of approximate k-nearest neighbor queries in massive high-dimensional databases. HD-Index consists of a set of novel hierarchical structures called RDB-trees built on Hilbert keys of database objects. The leaves of the RDB-trees store distances of database objects to reference objects, thereby allowing efficient pruning using distance filters. In addition to triangular inequality, we also use Ptolemaic inequality to produce better lower bounds. Experiments on massive (up to billion scale) high-dimensional (up to 1000+) datasets show that HD-Index is effective, efficient, and scalable.Comment: PVLDB 11(8):906-919, 201

    Efficient k-NN search on vertically decomposed data

    Get PDF
    Applications like multimedia retrieval require efficient support for similarity search on large data collections. Yet, nearest neighbor search is a difficult problem in high dimensional spaces, rendering efficient applications hard to realize: index structures degrade rapidly with increasing dimensionality, while sequential search is not an attractive solution for repositories with millions of objects. This paper approaches the problem from a different angle. A solution is sought in an unconventional storage scheme, that opens up a new range of techniques for processing k-NN queries, especially suited for high dimensional spaces. The suggested (physical) database design accommodates well a novel variant of branch-and-bound search, t

    Compressive Mining: Fast and Optimal Data Mining in the Compressed Domain

    Full text link
    Real-world data typically contain repeated and periodic patterns. This suggests that they can be effectively represented and compressed using only a few coefficients of an appropriate basis (e.g., Fourier, Wavelets, etc.). However, distance estimation when the data are represented using different sets of coefficients is still a largely unexplored area. This work studies the optimization problems related to obtaining the \emph{tightest} lower/upper bound on Euclidean distances when each data object is potentially compressed using a different set of orthonormal coefficients. Our technique leads to tighter distance estimates, which translates into more accurate search, learning and mining operations \textit{directly} in the compressed domain. We formulate the problem of estimating lower/upper distance bounds as an optimization problem. We establish the properties of optimal solutions, and leverage the theoretical analysis to develop a fast algorithm to obtain an \emph{exact} solution to the problem. The suggested solution provides the tightest estimation of the L2L_2-norm or the correlation. We show that typical data-analysis operations, such as k-NN search or k-Means clustering, can operate more accurately using the proposed compression and distance reconstruction technique. We compare it with many other prevalent compression and reconstruction techniques, including random projections and PCA-based techniques. We highlight a surprising result, namely that when the data are highly sparse in some basis, our technique may even outperform PCA-based compression. The contributions of this work are generic as our methodology is applicable to any sequential or high-dimensional data as well as to any orthogonal data transformation used for the underlying data compression scheme.Comment: 25 pages, 20 figures, accepted in VLD
    corecore