161,376 research outputs found

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Linear Memory Networks

    Full text link
    Recurrent neural networks can learn complex transduction problems that require maintaining and actively exploiting a memory of their inputs. Such models traditionally consider memory and input-output functionalities indissolubly entangled. We introduce a novel recurrent architecture based on the conceptual separation between the functional input-output transformation and the memory mechanism, showing how they can be implemented through different neural components. By building on such conceptualization, we introduce the Linear Memory Network, a recurrent model comprising a feedforward neural network, realizing the non-linear functional transformation, and a linear autoencoder for sequences, implementing the memory component. The resulting architecture can be efficiently trained by building on closed-form solutions to linear optimization problems. Further, by exploiting equivalence results between feedforward and recurrent neural networks we devise a pretraining schema for the proposed architecture. Experiments on polyphonic music datasets show competitive results against gated recurrent networks and other state of the art models
    • …
    corecore