2,747 research outputs found

    Searchable Sky Coverage of Astronomical Observations: Footprints and Exposures

    Full text link
    Sky coverage is one of the most important pieces of information about astronomical observations. We discuss possible representations, and present algorithms to create and manipulate shapes consisting of generalized spherical polygons with arbitrary complexity and size on the celestial sphere. This shape specification integrates well with our Hierarchical Triangular Mesh indexing toolbox, whose performance and capabilities are enhanced by the advanced features presented here. Our portable implementation of the relevant spherical geometry routines comes with wrapper functions for database queries, which are currently being used within several scientific catalog archives including the Sloan Digital Sky Survey, the Galaxy Evolution Explorer and the Hubble Legacy Archive projects as well as the Footprint Service of the Virtual Observatory.Comment: 11 pages, 7 figures, submitted to PAS

    A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane

    Get PDF
    In this paper, a novel technique for tight outer-approximation of the intersection region of a finite number of ellipses in 2-dimensional (2D) space is proposed. First, the vertices of a tight polygon that contains the convex intersection of the ellipses are found in an efficient manner. To do so, the intersection points of the ellipses that fall on the boundary of the intersection region are determined, and a set of points is generated on the elliptic arcs connecting every two neighbouring intersection points. By finding the tangent lines to the ellipses at the extended set of points, a set of half-planes is obtained, whose intersection forms a polygon. To find the polygon more efficiently, the points are given an order and the intersection of the half-planes corresponding to every two neighbouring points is calculated. If the polygon is convex and bounded, these calculated points together with the initially obtained intersection points will form its vertices. If the polygon is non-convex or unbounded, we can detect this situation and then generate additional discrete points only on the elliptical arc segment causing the issue, and restart the algorithm to obtain a bounded and convex polygon. Finally, the smallest area ellipse that contains the vertices of the polygon is obtained by solving a convex optimization problem. Through numerical experiments, it is illustrated that the proposed technique returns a tighter outer-approximation of the intersection of multiple ellipses, compared to conventional techniques, with only slightly higher computational cost

    Approximation algorithms for multi-facility location

    Full text link
    This thesis deals with the development and implementation of efficient algorithms to obtain acceptable solutions for the location of several facilities to serve customer sites. The general version of facility location problem is known to be NP-hard; For locating multiple facilities we use Voronoi diagram of initial facility locations to partition the customer sites into k clusters. On each Voronoi region, solutions for single facility problem is obtained by using both Weizfield\u27s algorithm and Center of Gravity. The customer space is again partitioned by using the newly computed locations. This iteration is continued to obtain a better solution for multi-facility location problem. We call the resulting algorithm: Voronoi driven k-median algorithm ; We report experimental results on several test data that include randomly distributed customers and distinctly clustered customers. The observed results show that the proposed approximation algorithm produces good results
    corecore