509 research outputs found

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Massive MIMO Performance - TDD Versus FDD: What Do Measurements Say?

    Full text link
    Downlink beamforming in Massive MIMO either relies on uplink pilot measurements - exploiting reciprocity and TDD operation, or on the use of a predetermined grid of beams with user equipments reporting their preferred beams, mostly in FDD operation. Massive MIMO in its originally conceived form uses the first strategy, with uplink pilots, whereas there is currently significant commercial interest in the second, grid-of-beams. It has been analytically shown that in isotropic scattering (independent Rayleigh fading) the first approach outperforms the second. Nevertheless there remains controversy regarding their relative performance in practice. In this contribution, the performances of these two strategies are compared using measured channel data at 2.6 GHz.Comment: Submitted to IEEE Transactions on Wireless Communications, 31/Mar/201

    Performance Analysis of Channel Extrapolation in FDD Massive MIMO Systems

    Full text link
    Channel estimation for the downlink of frequency division duplex (FDD) massive MIMO systems is well known to generate a large overhead as the amount of training generally scales with the number of transmit antennas in a MIMO system. In this paper, we consider the solution of extrapolating the channel frequency response from uplink pilot estimates to the downlink frequency band, which completely removes the training overhead. We first show that conventional estimators fail to achieve reasonable accuracy. We propose instead to use high-resolution channel estimation. We derive theoretical lower bounds (LB) for the mean squared error (MSE) of the extrapolated channel. Assuming that the paths are well separated, the LB is simplified in an expression that gives considerable physical insight. It is then shown that the MSE is inversely proportional to the number of receive antennas while the extrapolation performance penalty scales with the square of the ratio of the frequency offset and the training bandwidth. The channel extrapolation performance is validated through numeric simulations and experimental measurements taken in an anechoic chamber. Our main conclusion is that channel extrapolation is a viable solution for FDD massive MIMO systems if accurate system calibration is performed and favorable propagation conditions are present.Comment: arXiv admin note: substantial text overlap with arXiv:1902.0684

    Downlink Achievable Rate Analysis for FDD Massive MIMO Systems

    Get PDF
    Multiple-Input Multiple-Output (MIMO) systems with large-scale transmit antenna arrays, often called massive MIMO, are a very promising direction for 5G due to their ability to increase capacity and enhance both spectrum and energy efficiency. To get the benefit of massive MIMO systems, accurate downlink channel state information at the transmitter (CSIT) is essential for downlink beamforming and resource allocation. Conventional approaches to obtain CSIT for FDD massive MIMO systems require downlink training and CSI feedback. However, such training will cause a large overhead for massive MIMO systems because of the large dimensionality of the channel matrix. In this dissertation, we improve the performance of FDD massive MIMO networks in terms of downlink training overhead reduction, by designing an efficient downlink beamforming method and developing a new algorithm to estimate the channel state information based on compressive sensing techniques. First, we design an efficient downlink beamforming method based on partial CSI. By exploiting the relationship between uplink direction of arrivals (DoAs) and downlink direction of departures (DoDs), we derive an expression for estimated downlink DoDs, which will be used for downlink beamforming. Second, By exploiting the sparsity structure of downlink channel matrix, we develop an algorithm that selects the best features from the measurement matrix to obtain efficient CSIT acquisition that can reduce the downlink training overhead compared with conventional LS/MMSE estimators. In both cases, we compare the performance of our proposed beamforming method with traditional methods in terms of downlink achievable rate and simulation results show that our proposed method outperform the traditional beamforming methods

    Joint Port Selection Based Channel Acquisition for FDD Cell-Free Massive MIMO

    Full text link
    In frequency division duplexing (FDD) cell-free massive MIMO, the acquisition of the channel state information (CSI) is very challenging because of the large overhead required for the training and feedback of the downlink channels of multiple cooperating base stations (BSs). In this paper, for systems with partial uplink-downlink channel reciprocity, and a general spatial domain channel model with variations in the average port power and correlation among port coefficients, we propose a joint-port-selection-based CSI acquisition and feedback scheme for the downlink transmission with zero-forcing precoding. The scheme uses an eigenvalue-decomposition-based transformation to reduce the feedback overhead by exploring the port correlation. We derive the sum-rate of the system for any port selection. Based on the sum-rate result, we propose a low-complexity greedy-search-based joint port selection (GS-JPS) algorithm. Moreover, to adapt to fast time-varying scenarios, a supervised deep learning-enhanced joint port selection (DL-JPS) algorithm is proposed. Simulations verify the effectiveness of our proposed schemes and their advantage over existing port-selection channel acquisition schemes.Comment: 30 pages, 9 figures. The paper has been submitted to IEEE journal for possible publicatio
    corecore