39 research outputs found

    Efficient Algorithms for Privately Releasing Marginals via Convex Relaxations

    Full text link
    Consider a database of nn people, each represented by a bit-string of length dd corresponding to the setting of dd binary attributes. A kk-way marginal query is specified by a subset SS of kk attributes, and a S|S|-dimensional binary vector β\beta specifying their values. The result for this query is a count of the number of people in the database whose attribute vector restricted to SS agrees with β\beta. Privately releasing approximate answers to a set of kk-way marginal queries is one of the most important and well-motivated problems in differential privacy. Information theoretically, the error complexity of marginal queries is well-understood: the per-query additive error is known to be at least Ω(min{n,dk2})\Omega(\min\{\sqrt{n},d^{\frac{k}{2}}\}) and at most O~(min{nd1/4,dk2})\tilde{O}(\min\{\sqrt{n} d^{1/4},d^{\frac{k}{2}}\}). However, no polynomial time algorithm with error complexity as low as the information theoretic upper bound is known for small nn. In this work we present a polynomial time algorithm that, for any distribution on marginal queries, achieves average error at most O~(ndk/24)\tilde{O}(\sqrt{n} d^{\frac{\lceil k/2 \rceil}{4}}). This error bound is as good as the best known information theoretic upper bounds for k=2k=2. This bound is an improvement over previous work on efficiently releasing marginals when kk is small and when error o(n)o(n) is desirable. Using private boosting we are also able to give nearly matching worst-case error bounds. Our algorithms are based on the geometric techniques of Nikolov, Talwar, and Zhang. The main new ingredients are convex relaxations and careful use of the Frank-Wolfe algorithm for constrained convex minimization. To design our relaxations, we rely on the Grothendieck inequality from functional analysis

    Private Multiplicative Weights Beyond Linear Queries

    Full text link
    A wide variety of fundamental data analyses in machine learning, such as linear and logistic regression, require minimizing a convex function defined by the data. Since the data may contain sensitive information about individuals, and these analyses can leak that sensitive information, it is important to be able to solve convex minimization in a privacy-preserving way. A series of recent results show how to accurately solve a single convex minimization problem in a differentially private manner. However, the same data is often analyzed repeatedly, and little is known about solving multiple convex minimization problems with differential privacy. For simpler data analyses, such as linear queries, there are remarkable differentially private algorithms such as the private multiplicative weights mechanism (Hardt and Rothblum, FOCS 2010) that accurately answer exponentially many distinct queries. In this work, we extend these results to the case of convex minimization and show how to give accurate and differentially private solutions to *exponentially many* convex minimization problems on a sensitive dataset

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}

    Dual Query: Practical Private Query Release for High Dimensional Data

    Full text link
    We present a practical, differentially private algorithm for answering a large number of queries on high dimensional datasets. Like all algorithms for this task, ours necessarily has worst-case complexity exponential in the dimension of the data. However, our algorithm packages the computationally hard step into a concisely defined integer program, which can be solved non-privately using standard solvers. We prove accuracy and privacy theorems for our algorithm, and then demonstrate experimentally that our algorithm performs well in practice. For example, our algorithm can efficiently and accurately answer millions of queries on the Netflix dataset, which has over 17,000 attributes; this is an improvement on the state of the art by multiple orders of magnitude

    An Improved Private Mechanism for Small Databases

    Full text link
    We study the problem of answering a workload of linear queries Q\mathcal{Q}, on a database of size at most n=o(Q)n = o(|\mathcal{Q}|) drawn from a universe U\mathcal{U} under the constraint of (approximate) differential privacy. Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for any given Q\mathcal{Q} and nn, answers the queries with average error that is at most a factor polynomial in logQ\log |\mathcal{Q}| and logU\log |\mathcal{U}| worse than the best possible. Here we improve on this guarantee and give a mechanism whose competitiveness ratio is at most polynomial in logn\log n and logU\log |\mathcal{U}|, and has no dependence on Q|\mathcal{Q}|. Our mechanism is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in place of an ad-hoc noise distribution, we use a distribution which is in a sense optimal for the projection mechanism, and analyze it using convex duality and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track
    corecore