172 research outputs found

    Scalable and Robust Community Detection with Randomized Sketching

    Full text link
    This paper explores and analyzes the unsupervised clustering of large partially observed graphs. We propose a scalable and provable randomized framework for clustering graphs generated from the stochastic block model. The clustering is first applied to a sub-matrix of the graph's adjacency matrix associated with a reduced graph sketch constructed using random sampling. Then, the clusters of the full graph are inferred based on the clusters extracted from the sketch using a correlation-based retrieval step. Uniform random node sampling is shown to improve the computational complexity over clustering of the full graph when the cluster sizes are balanced. A new random degree-based node sampling algorithm is presented which significantly improves upon the performance of the clustering algorithm even when clusters are unbalanced. This algorithm improves the phase transitions for matrix-decomposition-based clustering with regard to computational complexity and minimum cluster size, which are shown to be nearly dimension-free in the low inter-cluster connectivity regime. A third sampling technique is shown to improve balance by randomly sampling nodes based on spatial distribution. We provide analysis and numerical results using a convex clustering algorithm based on matrix completion

    Spatial Random Sampling: A Structure-Preserving Data Sketching Tool

    Full text link
    Random column sampling is not guaranteed to yield data sketches that preserve the underlying structures of the data and may not sample sufficiently from less-populated data clusters. Also, adaptive sampling can often provide accurate low rank approximations, yet may fall short of producing descriptive data sketches, especially when the cluster centers are linearly dependent. Motivated by that, this paper introduces a novel randomized column sampling tool dubbed Spatial Random Sampling (SRS), in which data points are sampled based on their proximity to randomly sampled points on the unit sphere. The most compelling feature of SRS is that the corresponding probability of sampling from a given data cluster is proportional to the surface area the cluster occupies on the unit sphere, independently from the size of the cluster population. Although it is fully randomized, SRS is shown to provide descriptive and balanced data representations. The proposed idea addresses a pressing need in data science and holds potential to inspire many novel approaches for analysis of big data

    An accurate, fast, mathematically robust, universal, non-iterative algorithm for computing multi-component diffusion velocities

    Full text link
    Using accurate multi-component diffusion treatment in numerical combustion studies remains formidable due to the computational cost associated with solving for diffusion velocities. To obtain the diffusion velocities, for low density gases, one needs to solve the Stefan-Maxwell equations along with the zero diffusion flux criteria, which scales as O(N3)\mathcal{O}(N^3), when solved exactly. In this article, we propose an accurate, fast, direct and robust algorithm to compute multi-component diffusion velocities. To our knowledge, this is the first provably accurate algorithm (the solution can be obtained up to an arbitrary degree of precision) scaling at a computational complexity of O(N)\mathcal{O}(N) in finite precision. The key idea involves leveraging the fact that the matrix of the reciprocal of the binary diffusivities, VV, is low rank, with its rank being independent of the number of species involved. The low rank representation of matrix VV is computed in a fast manner at a computational complexity of O(N)\mathcal{O}(N) and the Sherman-Morrison-Woodbury formula is used to solve for the diffusion velocities at a computational complexity of O(N)\mathcal{O}(N). Rigorous proofs and numerical benchmarks illustrate the low rank property of the matrix VV and scaling of the algorithm.Comment: 16 pages, 7 figures, 1 table, 1 algorith

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge
    corecore