17 research outputs found

    An Efficient Algorithm for Finding Dominant Trapping Sets of LDPC Codes

    Full text link
    This paper presents an efficient algorithm for finding the dominant trapping sets of a low-density parity-check (LDPC) code. The algorithm can be used to estimate the error floor of LDPC codes or to be part of the apparatus to design LDPC codes with low error floors. For regular codes, the algorithm is initiated with a set of short cycles as the input. For irregular codes, in addition to short cycles, variable nodes with low degree and cycles with low approximate cycle extrinsic message degree (ACE) are also used as the initial inputs. The initial inputs are then expanded recursively to dominant trapping sets of increasing size. At the core of the algorithm lies the analysis of the graphical structure of dominant trapping sets and the relationship of such structures to short cycles, low-degree variable nodes and cycles with low ACE. The algorithm is universal in the sense that it can be used for an arbitrary graph and that it can be tailored to find other graphical objects, such as absorbing sets and Zyablov-Pinsker (ZP) trapping sets, known to dominate the performance of LDPC codes in the error floor region over different channels and for different iterative decoding algorithms. Simulation results on several LDPC codes demonstrate the accuracy and efficiency of the proposed algorithm. In particular, the algorithm is significantly faster than the existing search algorithms for dominant trapping sets

    Refined Upper Bounds on Stopping Redundancy of Binary Linear Codes

    Full text link
    The ll-th stopping redundancy ρl(C)\rho_l(\mathcal C) of the binary [n,k,d][n, k, d] code C\mathcal C, 1ld1 \le l \le d, is defined as the minimum number of rows in the parity-check matrix of C\mathcal C, such that the smallest stopping set is of size at least ll. The stopping redundancy ρ(C)\rho(\mathcal C) is defined as ρd(C)\rho_d(\mathcal C). In this work, we improve on the probabilistic analysis of stopping redundancy, proposed by Han, Siegel and Vardy, which yields the best bounds known today. In our approach, we judiciously select the first few rows in the parity-check matrix, and then continue with the probabilistic method. By using similar techniques, we improve also on the best known bounds on ρl(C)\rho_l(\mathcal C), for 1ld1 \le l \le d. Our approach is compared to the existing methods by numerical computations.Comment: 5 pages; ITW 201

    From Cages to Trapping Sets and Codewords: A Technique to Derive Tight Upper Bounds on the Minimum Size of Trapping Sets and Minimum Distance of LDPC Codes

    Full text link
    Cages, defined as regular graphs with minimum number of nodes for a given girth, are well-studied in graph theory. Trapping sets are graphical structures responsible for error floor of low-density parity-check (LDPC) codes, and are well investigated in coding theory. In this paper, we make connections between cages and trapping sets. In particular, starting from a cage (or a modified cage), we construct a trapping set in multiple steps. Based on the connection between cages and trapping sets, we then use the available results in graph theory on cages and derive tight upper bounds on the size of the smallest trapping sets for variable-regular LDPC codes with a given variable degree and girth. The derived upper bounds in many cases meet the best known lower bounds and thus provide the actual size of the smallest trapping sets. Considering that non-zero codewords are a special case of trapping sets, we also derive tight upper bounds on the minimum weight of such codewords, i.e., the minimum distance, of variable-regular LDPC codes as a function of variable degree and girth

    Trapping Sets of Quantum LDPC Codes

    Full text link
    Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing.Comment: Revised version - 19 pages, 12 figures - Accepted for publication in Quantu
    corecore