3 research outputs found

    Cross-layer hybrid automatic repeat request error control with turbo processing for wireless system

    Get PDF
    The increasing demand for wireless communication system requires an efficient design in wireless communication system. One of the main challenges is to design error control mechanism in noisy wireless channel. Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) are two main error control mechanisms. Hybrid ARQ allows the use of either FEC or ARQ when required. The issues with existing Hybrid ARQ are reliability, complexity and inefficient design. Therefore, the design of Hybrid ARQ needs to be further improved in order to achieve performance close to the Shannon capacity. The objective of this research is to develop a Cross-Layer Design Hybrid ARQ defined as CLD_ARQ to further minimize error in wireless communication system. CLD_ARQ comprises of three main stages. First, a low complexity FEC defined as IRC_FEC for error detection and correction has been developed by using Irregular Repetition Code (IRC) with Turbo processing. The second stage is the enhancement of IRC_FEC defined as EM_IRC_FEC to improve the reliability of error detection by adopting extended mapping. The last stage is the development of efficient CLD_ARQ to include retransmission for error correction that exploits EM_IRC_FEC and ARQ. In the proposed design, serial iterative decoding and parallel iterative decoding are deployed in the error detection and correction. The performance of the CLD_ARQ is evaluated in the Additive White Gaussian Noise (AWGN) channel using EXtrinsic Information Transfer (EXIT) chart, bit error rate (BER) and throughput analysis. The results show significant Signal-to-Noise Ratio (SNR) gain from the theoretical limit at BER of 10-5. IRC_FEC outperforms Recursive Systematic Convolutional Code (RSCC) by SNR gain up to 7% due to the use of IRC as a simple channel coding code. The usage of CLD_ARQ enhances the SNR gain by 53% compared to without ARQ due to feedback for retransmission. The adoption of extended mapping in the CLD_ARQ improves the SNR gain up to 50% due to error detection enhancement. In general, the proposed CLD_ARQ can achieve low BER and close to the Shannon‘s capacity even in worse channel condition

    Efficient ARQ Protocol for Hybrid Relay Schemes with Limited Feedback

    No full text
    When channel state information (CSI) is not available to the transmitter, outage events might happen and Automatic Repeat re-Quest (ARQ) is implemented to ensure reliable transmission in such case. In this paper, we consider a three nodes relay system with hybrid relay scheme, where the relay, based on it decoding status, could switch between decode-and-forward (DF) and compress-and-forward (CF) adaptively. We notice that CSI is required when CF is deployed and consider practical implementation issues by enhancing the ability of feedback channel from the destination to the relay to convey a few extra bits (only 2 bits in this paper) in addition to the ACK/NACK bit and propose a new ARQ scheme. The modified scheme allows the relay to utilize various relay schemes more flexibly according to its coding status and the extra feedback bits. ARQ strategies with hybrid relay schemes exhibits superior performance over direct transmission and pure DF, especially when the relay is close to the destination

    Efficient ARQ Protocol for Hybrid Relay Schemes with Limited Feedback

    No full text
    When channel state information (CSI) is not available to the transmitter, outage events might happen and Automatic Repeat re-Quest (ARQ) is implemented to ensure reliable transmission in such case. In this paper, we consider a three nodes relay system with hybrid relay scheme, where the relay, based on it decoding status, could switch between decode-and-forward (DF) and compress-and-forward (CF) adaptively. We notice that CSI is required when CF is deployed and consider practical implementation issues by enhancing the ability of feedback channel from the destination to the relay to convey a few extra bits (only 2 bits in this paper) in addition to the ACK/NACK bit and propose a new ARQ scheme. The modified scheme allows the relay to utilize various relay schemes more flexibly according to its coding status and the extra feedback bits. ARQ strategies with hybrid relay schemes exhibits superior performance over direct transmission and pure DF, especially when the relay is close to the destination
    corecore