11,555 research outputs found

    Low-Latency Sequence-to-Sequence Speech Recognition and Translation by Partial Hypothesis Selection

    Full text link
    Encoder-decoder models provide a generic architecture for sequence-to-sequence tasks such as speech recognition and translation. While offline systems are often evaluated on quality metrics like word error rates (WER) and BLEU, latency is also a crucial factor in many practical use-cases. We propose three latency reduction techniques for chunk-based incremental inference and evaluate their efficiency in terms of accuracy-latency trade-off. On the 300-hour How2 dataset, we reduce latency by 83% to 0.8 second by sacrificing 1% WER (6% rel.) compared to offline transcription. Although our experiments use the Transformer, the hypothesis selection strategies are applicable to other encoder-decoder models. To avoid expensive re-computation, we use a unidirectionally-attending encoder. After an adaptation procedure to partial sequences, the unidirectional model performs on-par with the original model. We further show that our approach is also applicable to low-latency speech translation. On How2 English-Portuguese speech translation, we reduce latency to 0.7 second (-84% rel.) while incurring a loss of 2.4 BLEU points (5% rel.) compared to the offline system

    Incremental Learning Using a Grow-and-Prune Paradigm with Efficient Neural Networks

    Full text link
    Deep neural networks (DNNs) have become a widely deployed model for numerous machine learning applications. However, their fixed architecture, substantial training cost, and significant model redundancy make it difficult to efficiently update them to accommodate previously unseen data. To solve these problems, we propose an incremental learning framework based on a grow-and-prune neural network synthesis paradigm. When new data arrive, the neural network first grows new connections based on the gradients to increase the network capacity to accommodate new data. Then, the framework iteratively prunes away connections based on the magnitude of weights to enhance network compactness, and hence recover efficiency. Finally, the model rests at a lightweight DNN that is both ready for inference and suitable for future grow-and-prune updates. The proposed framework improves accuracy, shrinks network size, and significantly reduces the additional training cost for incoming data compared to conventional approaches, such as training from scratch and network fine-tuning. For the LeNet-300-100 and LeNet-5 neural network architectures derived for the MNIST dataset, the framework reduces training cost by up to 64% (63%) and 67% (63%) compared to training from scratch (network fine-tuning), respectively. For the ResNet-18 architecture derived for the ImageNet dataset and DeepSpeech2 for the AN4 dataset, the corresponding training cost reductions against training from scratch (network fine-tunning) are 64% (60%) and 67% (62%), respectively. Our derived models contain fewer network parameters but achieve higher accuracy relative to conventional baselines
    • …
    corecore