32 research outputs found

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples

    Differential Privacy Applications to Bayesian and Linear Mixed Model Estimation

    Get PDF
    We consider a particular maximum likelihood estimator (MLE) and a computationally-intensive Bayesian method for differentially private estimation of the linear mixed-effects model (LMM) with normal random errors. The LMM is important because it is used in small area estimation and detailed industry tabulations that present significant challenges for confidentiality protection of the underlying data. The differentially private MLE performs well compared to the regular MLE, and deteriorates as the protection increases for a problem in which the small-area variation is at the county level. More dimensions of random effects are needed to adequately represent the time- dimension of the data, and for these cases the differentially private MLE cannot be computed. The direct Bayesian approach for the same model uses an informative, but reasonably diffuse, prior to compute the posterior predictive distribution for the random effects. The differential privacy of this approach is estimated by direct computation of the relevant odds ratios after deleting influential observations according to various criteria
    corecore