11,329 research outputs found

    Micro-economic Analysis of the Physical Constrained Markets: Game Theory Application to Competitive Electricity Markets

    Full text link
    Competition has been introduced in the electricity markets with the goal of reducing prices and improving efficiency. The basic idea which stays behind this choice is that, in competitive markets, a greater quantity of the good is exchanged at a lower and a lower price, leading to higher market efficiency. Electricity markets are pretty different from other commodities mainly due to the physical constraints related to the network structure that may impact the market performance. The network structure of the system on which the economic transactions need to be undertaken poses strict physical and operational constraints. Strategic interactions among producers that game the market with the objective of maximizing their producer surplus must be taken into account when modeling competitive electricity markets. The physical constraints, specific of the electricity markets, provide additional opportunity of gaming to the market players. Game theory provides a tool to model such a context. This paper discussed the application of game theory to physical constrained electricity markets with the goal of providing tools for assessing the market performance and pinpointing the critical network constraints that may impact the market efficiency. The basic models of game theory specifically designed to represent the electricity markets will be presented. IEEE30 bus test system of the constrained electricity market will be discussed to show the network impacts on the market performances in presence of strategic bidding behavior of the producers.Comment: Accepted for publication in the European Journal of Physics B. Presented at the Int. Conf. NEXT-SigmaPhi, 13-18 August 2005, Cret

    Learning from past bids to participate strategically in day-ahead electricity markets

    Full text link
    We consider the process of bidding by electricity suppliers in a day-ahead market context, where each supplier bids a linear non-decreasing function of her generating capacity with the goal of maximizing her individual profit given other competing suppliers' bids. Based on the submitted bids, the market operator schedules suppliers to meet demand during each hour and determines hourly market clearing prices. Eventually, this game-theoretic process reaches a Nash equilibrium when no supplier is motivated to modify her bid. However, solving the individual profit maximization problem requires information of rivals' bids, which are typically not available. To address this issue, we develop an inverse optimization approach for estimating rivals' production cost functions given historical market clearing prices and production levels. We then use these functions to bid strategically and compute Nash equilibrium bids. We present numerical experiments illustrating our methodology, showing good agreement between bids based on the estimated production cost functions with the bids based on the true cost functions. We discuss an extension of our approach that takes into account network congestion resulting in location-dependent pricesFirst author draf

    Learning from Past Bids to Participate Strategically in Day-Ahead Electricity Markets

    Full text link
    We consider the process of bidding by electricity suppliers in a day-ahead market context where each supplier bids a linear non-decreasing function of her generating capacity with the goal of maximizing her individual profit given other competing suppliers' bids. Based on the submitted bids, the market operator schedules suppliers to meet demand during each hour and determines hourly market clearing prices. Eventually, this game-theoretic process reaches a Nash equilibrium when no supplier is motivated to modify her bid. However, solving the individual profit maximization problem requires information of rivals' bids, which are typically not available. To address this issue, we develop an inverse optimization approach for estimating rivals' production cost functions given historical market clearing prices and production levels. We then use these functions to bid strategically and compute Nash equilibrium bids. We present numerical experiments illustrating our methodology, showing good agreement between bids based on the estimated production cost functions with the bids based on the true cost functions. We discuss an extension of our approach that takes into account network congestion resulting in location-dependent prices

    Agent-based simulation of electricity markets: a literature review

    Get PDF
    Liberalisation, climate policy and promotion of renewable energy are challenges to players of the electricity sector in many countries. Policy makers have to consider issues like market power, bounded rationality of players and the appearance of fluctuating energy sources in order to provide adequate legislation. Furthermore the interactions between markets and environmental policy instruments become an issue of increasing importance. A promising approach for the scientific analysis of these developments is the field of agent-based simulation. The goal of this article is to provide an overview of the current work applying this methodology to the analysis of electricity markets. --

    Cournot Versus Supply Functions: What does the Data Tell us?

    Get PDF
    The liberalization of the electricity sector increases the need for realistic and robust models of the oligopolistic interaction of electricity firms. This paper compares the two most popular models: Cournot and the Supply Function Equilibrium (SFE), and tests which model describes the observed market data best. Using identical demand and supply specifications, both models are calibrated to the German electricity market by varying the contract cover of firms. Our results show that each model explains an identical fraction of the observed price variation. We therefore suggest using Cournot models for short term analysis, as more market details, such as network constraints, can be accommodated. As the SFE model is less sensitive to the choice of the calibration parameters, it might be more appropriate for long term analysis, such as the study of a merger.supply function equilibrium;Cournot competition;electricity markets

    Cournot versus supply functions: what does the data tell us?

    Get PDF
    The liberalization of the electricity sector increases the need for realistic and robust models of the oligopolistic interaction of electricity firms. This paper compares the two most popular models: Cournot and the Supply Function Equilibrium (SFE), and tests which model describes the observed market data best. Using identical demand and supply specifications, both models are calibrated to the German electricity market by varying the contract cover of firms. Our results show that each model explains an identical fraction of the observed price variation. We therefore suggest using Cournot models for short term analysis, as more market details, such as network constraints, can be accommodated. As the SFE model is less sensitive to the choice of the calibration parameters, it might be more appropriate for long term analysis, such as the study of a merger.supply function equilibrium, Cournot competition, electricity markets
    • 

    corecore