1,883 research outputs found

    Least quantile regression via modern optimization

    Get PDF
    We address the Least Quantile of Squares (LQS) (and in particular the Least Median of Squares) regression problem using modern optimization methods. We propose a Mixed Integer Optimization (MIO) formulation of the LQS problem which allows us to find a provably global optimal solution for the LQS problem. Our MIO framework has the appealing characteristic that if we terminate the algorithm early, we obtain a solution with a guarantee on its sub-optimality. We also propose continuous optimization methods based on first-order subdifferential methods, sequential linear optimization and hybrid combinations of them to obtain near optimal solutions to the LQS problem. The MIO algorithm is found to benefit significantly from high quality solutions delivered by our continuous optimization based methods. We further show that the MIO approach leads to (a) an optimal solution for any dataset, where the data-points (yi,xi)(y_i,\mathbf{x}_i)'s are not necessarily in general position, (b) a simple proof of the breakdown point of the LQS objective value that holds for any dataset and (c) an extension to situations where there are polyhedral constraints on the regression coefficient vector. We report computational results with both synthetic and real-world datasets showing that the MIO algorithm with warm starts from the continuous optimization methods solve small (n=100n=100) and medium (n=500n=500) size problems to provable optimality in under two hours, and outperform all publicly available methods for large-scale (n=n={}10,000) LQS problems.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1223 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The Sharp Lower Bound of Asymptotic Efficiency of Estimators in the Zone of Moderate Deviation Probabilities

    Full text link
    For the zone of moderate deviation probabilities the local asymptotic minimax lower bound of asymptotic efficiency of estimators is established. The estimation parameter is multidimensional. The lower bound admits the interpretation as the lower bound of asymptotic efficiency in confidence estimation

    PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

    Full text link
    Generalized linear models (GLMs) -- such as logistic regression, Poisson regression, and robust regression -- provide interpretable models for diverse data types. Probabilistic approaches, particularly Bayesian ones, allow coherent estimates of uncertainty, incorporation of prior information, and sharing of power across experiments via hierarchical models. In practice, however, the approximate Bayesian methods necessary for inference have either failed to scale to large data sets or failed to provide theoretical guarantees on the quality of inference. We propose a new approach based on constructing polynomial approximate sufficient statistics for GLMs (PASS-GLM). We demonstrate that our method admits a simple algorithm as well as trivial streaming and distributed extensions that do not compound error across computations. We provide theoretical guarantees on the quality of point (MAP) estimates, the approximate posterior, and posterior mean and uncertainty estimates. We validate our approach empirically in the case of logistic regression using a quadratic approximation and show competitive performance with stochastic gradient descent, MCMC, and the Laplace approximation in terms of speed and multiple measures of accuracy -- including on an advertising data set with 40 million data points and 20,000 covariates.Comment: In Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017). v3: corrected typos in Appendix
    • …
    corecore