71,944 research outputs found

    Performance Analysis and Enhancement of Multiband OFDM for UWB Communications

    Full text link
    In this paper, we analyze the frequency-hopping orthogonal frequency-division multiplexing (OFDM) system known as Multiband OFDM for high-rate wireless personal area networks (WPANs) based on ultra-wideband (UWB) transmission. Besides considering the standard, we also propose and study system performance enhancements through the application of Turbo and Repeat-Accumulate (RA) codes, as well as OFDM bit-loading. Our methodology consists of (a) a study of the channel model developed under IEEE 802.15 for UWB from a frequency-domain perspective suited for OFDM transmission, (b) development and quantification of appropriate information-theoretic performance measures, (c) comparison of these measures with simulation results for the Multiband OFDM standard proposal as well as our proposed extensions, and (d) the consideration of the influence of practical, imperfect channel estimation on the performance. We find that the current Multiband OFDM standard sufficiently exploits the frequency selectivity of the UWB channel, and that the system performs in the vicinity of the channel cutoff rate. Turbo codes and a reduced-complexity clustered bit-loading algorithm improve the system power efficiency by over 6 dB at a data rate of 480 Mbps.Comment: 32 pages, 10 figures, 1 table. Submitted to the IEEE Transactions on Wireless Communications (Sep. 28, 2005). Minor revisions based on reviewers' comments (June 23, 2006

    Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques

    Get PDF
    This paper investigates experimental means of measuring the transmission matrix (TM) of a highly scattering medium, with the simplest optical setup. Spatial light modulation is performed by a digital micromirror device (DMD), allowing high rates and high pixel counts but only binary amplitude modulation. We used intensity measurement only, thus avoiding the need for a reference beam. Therefore, the phase of the TM has to be estimated through signal processing techniques of phase retrieval. Here, we compare four different phase retrieval principles on noisy experimental data. We validate our estimations of the TM on three criteria : quality of prediction, distribution of singular values, and quality of focusing. Results indicate that Bayesian phase retrieval algorithms with variational approaches provide a good tradeoff between the computational complexity and the precision of the estimates
    • …
    corecore