355 research outputs found

    Choreographic and Somatic Approaches for the Development of Expressive Robotic Systems

    Full text link
    As robotic systems are moved out of factory work cells into human-facing environments questions of choreography become central to their design, placement, and application. With a human viewer or counterpart present, a system will automatically be interpreted within context, style of movement, and form factor by human beings as animate elements of their environment. The interpretation by this human counterpart is critical to the success of the system's integration: knobs on the system need to make sense to a human counterpart; an artificial agent should have a way of notifying a human counterpart of a change in system state, possibly through motion profiles; and the motion of a human counterpart may have important contextual clues for task completion. Thus, professional choreographers, dance practitioners, and movement analysts are critical to research in robotics. They have design methods for movement that align with human audience perception, can identify simplified features of movement for human-robot interaction goals, and have detailed knowledge of the capacity of human movement. This article provides approaches employed by one research lab, specific impacts on technical and artistic projects within, and principles that may guide future such work. The background section reports on choreography, somatic perspectives, improvisation, the Laban/Bartenieff Movement System, and robotics. From this context methods including embodied exercises, writing prompts, and community building activities have been developed to facilitate interdisciplinary research. The results of this work is presented as an overview of a smattering of projects in areas like high-level motion planning, software development for rapid prototyping of movement, artistic output, and user studies that help understand how people interpret movement. Finally, guiding principles for other groups to adopt are posited.Comment: Under review at MDPI Arts Special Issue "The Machine as Artist (for the 21st Century)" http://www.mdpi.com/journal/arts/special_issues/Machine_Artis

    Bridging the gap between emotion and joint action

    Get PDF
    Our daily human life is filled with a myriad of joint action moments, be it children playing, adults working together (i.e., team sports), or strangers navigating through a crowd. Joint action brings individuals (and embodiment of their emotions) together, in space and in time. Yet little is known about how individual emotions propagate through embodied presence in a group, and how joint action changes individual emotion. In fact, the multi-agent component is largely missing from neuroscience-based approaches to emotion, and reversely joint action research has not found a way yet to include emotion as one of the key parameters to model socio-motor interaction. In this review, we first identify the gap and then stockpile evidence showing strong entanglement between emotion and acting together from various branches of sciences. We propose an integrative approach to bridge the gap, highlight five research avenues to do so in behavioral neuroscience and digital sciences, and address some of the key challenges in the area faced by modern societies

    Theories and Models of Teams and Groups

    Get PDF
    This article describes some of the theoretical approaches used by social scientists as well as those used by computer scientists to study the team and group phenomena. The purpose of this article is to identify ways in which these different fields can share and develop theoretical models and theoretical approaches, in an effort to gain a better understanding and further develop team and group research

    Making New "New AI" Friends : Designing a Social Robot for Diabetic Children from an Embodied AI Perspective

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Robin is a cognitively and motivationally autonomous affective robot toddler with "robot diabetes" that we have developed to support perceived self-efficacy and emotional wellbeing in children with diabetes by providing them with positive mastery experiences of diabetes management in a playful but realistic and natural interaction context. Underlying the design of Robin is an "Embodied" (formerly also known as "New") Artificial Intelligence approach to robotics. In this paper we discuss the rationale behind the design of Robin to meet the needs of our intended end users (both children and medical staff), and how "New AI" provides a suitable approach to developing a friendly companion that fulfills the therapeutic and affective requirements of our end users beyond other approaches commonly used in assistive robotics and child-robot interaction. Finally, we discuss how our approach permitted our robot to interact with and provide suitable experiences of diabetes management to children with very different social interaction styles.Peer reviewedFinal Published versio

    Dance as a Community of Practice: Exploring Dance Groups in the Kansas City Area through the Lifespan

    Get PDF
    Title from PDF of title page, viewed on August 4, 2015Dissertation advisor: Shannon JacksonVitaIncludes bibliographic references (pages 485-499)Thesis (Ph.D.)--Department of Sociology and Department of Psychology. University of Missouri--Kansas City, 2015This dissertation examines the embodied cultural practice of dance among several groups in the Kansas City area. The dance groups were studied as Communities of Practice (CoP), as outlined in the Lave-Wenger model of CoP. The CoP model uses the complementary concepts of “reified structures” and “peripheral participation” to explain social learning. This dissertation argues that participation in dance activities creates body schema and social bonds that make dance a powerful mechanism for learning and teaching social behaviors. The dance groups studied covered a spectrum of dance genres, including folkloric, popular, hip-hop, ballroom, ballet, and modern dance. Data were collected from participant observation, interviews, archives, cable TV shows, websites, and published materials. Archival documentation included photographic and video materials, as well as survey data available for secondary analysis. Grounded Theory Methodology based on qualitative data was deemed the most appropriate approach. By examining these dance groups, certain social processes were consistently observed, including 1) similarities in dance practice across groups led to similar social practices and processes over the lifespan; 2) differences in dance genre aesthetic structure were associated with different forms of CoP structure and organization; the more structured the aesthetic of the dance genre, the more structured and hierarchical the organization of the dance group; 3) certain factors/attributes of the CoPs contributed to the dance group’s robustness and longevity; and 4) the mediation of time and space with other dancers during dance served as a model of interactions between self and others and developed the skills of collaboration. Overall, this study found the sharing and mediation of time and space during dance shaped individual social interactions into increasingly cooperative and collaborative activities. Also, the aesthetic structure of the dance genre was associated with the dance group's hierarchical social structure.The project -- Literature review -- Methodology -- Historical context -- Theoretical bases of embodied behavior and social interaction -- Analysis of social dance from a meadian perspective -- Results: analysis of data as community practice -- Conclusion and discussion -- Appendix A. Culture through Ballroom Dance Questionnaire Documents -- Appendix B. Informed Permission Statement -- Appendix C. Models and Diagrams -- Appendix D. Historic Dance Photographs -- Appendix E. Photographs Illustrating Taxonom

    Cognitive, neural, and social mechanisms of rhythmic interpersonal coordination

    Get PDF
    Humans possess the exceptional capacity to temporally coordinate their movements with one another with a high degree of accuracy, precision, and flexibility. Musical ensemble performance is a refined example of this, where a range of cognitive and sensory-motor processes work together to support rhythmic interpersonal coordination. However, the influence of social factors on the underlying cognitive-motor and neural mechanisms that facilitate rhythmic interpersonal coordination is yet to be established. This thesis draws on theoretical perspectives related to joint action, including co-representation, self-other integration and segregation, and theoretical models of sensorimotor synchronisation to consider this topic. Three experiments were conducted to investigate how social factors influence rhythmic interpersonal coordination. This broad empirical question was broken down by considering both extrinsic factors—such as the social context and perceived characteristics of an interaction partner (e.g. the degree of partner intentionality and responsiveness)—as well as intrinsic social factors, such as individual differences in attitudes and social preferences. This thesis concludes that extrinsic and intrinsic social factors affect rhythmic interpersonal coordination at multiple levels. A key aspect of this influence relates to how people regulate the integration and segregation of their representations of self and others. However, importantly, these effects are mediated by individual differences in intrinsic social factors such as personal preferences and biases. Top-down processes related to beliefs thus influence bottom-up sensorimotor processes during joint action, but the nature of this influence appears to be different for different people. This outcome highlights the necessity of taking individual differences into account, particularly when investigating the nuances of social processing during dynamic social interactions. Furthermore, the current findings suggest that beliefs about a partner during social interaction may be just as, or even more so, influential on performance than the actual characteristics of the partner. Recognising the potency of social beliefs has implications not only for research into basic psychological mechanisms underpinning rhythmic interpersonal coordination, but also for understanding the broader social dynamics of real-life situations involving cooperative joint action understanding the broader social dynamics of real-life situations involving cooperative joint action

    Towards a framework to make robots learn to dance

    Get PDF
    A key motive of human-robot interaction is to make robots and humans interact through different aspects of the real world. As robots become more and more realistic in appearance, so has the desire for them to exhibit complex behaviours. A growing area of interest in terms of complex behaviour is robot dancing. Dance is an entertaining activity that is enjoyed either by being the performer or the spectator. Each dance contain fundamental features that make-up a dance. It is the curiosity for some researchers to model such an activity for robots to perform in human social environments. From current research, most dancing robots are pre-programmed with dance motions and few have the ability to generate their own dance or alter their movements according to human responses while dancing. This thesis explores the question Can a robot learn to dance? . A dancing framework is proposed to address this question. The Sarsa algorithm and the Softmax algorithm from traditional reinforcement learning form part of the dancing framework to enable a virtual robot learn and adapt to appropriate dance behaviours. The robot follows a progressive approach, utilising the knowledge obtained at each stage of its development to improve the dances that it generates. The proposed framework addresses three stages of development of a robot s dance: learning ability; creative ability of dance motions, and adaptive ability to human preferences. Learning ability is the ability to make a robot gradually perform the desired dance behaviours. Creative ability is the idea of the robot generating its own dance motions, and structuring them into a dance. Adaptive ability is where the robot changes its dance in response to human feedback. A number of experiments have been conducted to explore these challenges, and verified that the quality of the robot dance can be improved through each stage of the robot s development

    Emergent coordination between humans and robots

    Get PDF
    Emergent coordination or movement synchronization is an often observed phenomenon in human behavior. Humans synchronize their gait when walking next to each other, they synchronize their postural sway when standing closely, and they also synchronize their movement behavior in many other situations of daily life. Why humans are doing this is an important question of ongoing research in many disciplines: apparently movement synchronization plays a role in children’s development and learning; it is related to our social and emotional behavior in interaction with others; it is an underlying principle in the organization of communication by means of language and gesture; and finally, models explaining movement synchronization between two individuals can also be extended to group behavior. Overall, one can say that movement synchronization is an important principle of human interaction behavior. Besides interacting with other humans, in recent years humans do more and more interact with technology. This was first expressed in the interaction with machines in industrial settings, was taken further to human-computer interaction and is now facing a new challenge: the interaction with active and autonomous machines, the interaction with robots. If the vision of today’s robot developers comes true, in the near future robots will be fully integrated not only in our workplace, but also in our private lives. They are supposed to support humans in activities of daily living and even care for them. These circumstances however require the development of interactional principles which the robot can apply to the direct interaction with humans. In this dissertation the problem of robots entering the human society will be outlined and the need for the exploration of human interaction principles that are transferable to human-robot interaction will be emphasized. Furthermore, an overview on human movement synchronization as a very important phenomenon in human interaction will be given, ranging from neural correlates to social behavior. The argument of this dissertation is that human movement synchronization is a simple but striking human interaction principle that can be applied in human-robot interaction to support human activity of daily living, demonstrated on the example of pick-and-place tasks. This argument is based on five publications. In the first publication, human movement synchronization is explored in goal-directed tasks which bare similar requirements as pick-and-place tasks in activities of daily living. In order to explore if a merely repetitive action of the robot is sufficient to encourage human movement synchronization, the second publication reports a human-robot interaction study in which a human interacts with a non-adaptive robot. Here however, movement synchronization between human and robot does not emerge, which underlines the need for adaptive mechanisms. Therefore, in the third publication, human adaptive behavior in goal-directed movement synchronization is explored. In order to make the findings from the previous studies applicable to human-robot interaction, in the fourth publication the development of an interaction model based on dynamical systems theory is outlined which is ready for implementation on a robotic platform. Following this, a brief overview on a first human-robot interaction study based on the developed interaction model is provided. The last publication describes an extension of the previous approach which also includes the human tendency to make use of events to adapt their movements to. Here, also a first human-robot interaction study is reported which confirms the applicability of the model. The dissertation concludes with a discussion on the presented findings in the light of human-robot interaction and psychological aspects of joint action research as well as the problem of mutual adaptation.Spontan auftretende Koordination oder Bewegungssynchronisierung ist ein häufig zu beobachtendes Phänomen im Verhalten von Menschen. Menschen synchronisieren ihre Schritte beim nebeneinander hergehen, sie synchronisieren die Schwingbewegung zum Ausgleich der Körperbalance wenn sie nahe beieinander stehen und sie synchronisieren ihr Bewegungsverhalten generell in vielen weiteren Handlungen des täglichen Lebens. Die Frage nach dem warum ist eine Frage mit der sich die Forschung in der Psychologie, Neuro- und Bewegungswissenschaft aber auch in der Sozialwissenschaft nach wie vor beschäftigt: offenbar spielt die Bewegungssynchronisierung eine Rolle in der kindlichen Entwicklung und beim Erlernen von Fähigkeiten und Verhaltensmustern; sie steht in direktem Bezug zu unserem sozialen Verhalten und unserer emotionalen Wahrnehmung in der Interaktion mit Anderen; sie ist ein grundlegendes Prinzip in der Organisation von Kommunikation durch Sprache oder Gesten; außerdem können Modelle, die Bewegungssynchronisierung zwischen zwei Individuen erklären, auch auf das Verhalten innerhalb von Gruppen ausgedehnt werden. Insgesamt kann man also sagen, dass Bewegungssynchronisierung ein wichtiges Prinzip im menschlichen Interaktionsverhalten darstellt. Neben der Interaktion mit anderen Menschen interagieren wir in den letzten Jahren auch zunehmend mit der uns umgebenden Technik. Hier fand zunächst die Interaktion mit Maschinen im industriellen Umfeld Beachtung, später die Mensch-Computer-Interaktion. Seit kurzem sind wir jedoch mit einer neuen Herausforderung konfrontiert: der Interaktion mit aktiven und autonomen Maschinen, Maschinen die sich bewegen und aktiv mit Menschen interagieren, mit Robotern. Sollte die Vision der heutigen Roboterentwickler Wirklichkeit werde, so werden Roboter in der nahen Zukunft nicht nur voll in unser Arbeitsumfeld integriert sein, sondern auch in unser privates Leben. Roboter sollen den Menschen in ihren täglichen Aktivitäten unterstützen und sich sogar um sie kümmern. Diese Umstände erfordern die Entwicklung von neuen Interaktionsprinzipien, welche Roboter in der direkten Koordination mit dem Menschen anwenden können. In dieser Dissertation wird zunächst das Problem umrissen, welches sich daraus ergibt, dass Roboter zunehmend Einzug in die menschliche Gesellschaft finden. Außerdem wird die Notwendigkeit der Untersuchung menschlicher Interaktionsprinzipien, die auf die Mensch-Roboter-Interaktion transferierbar sind, hervorgehoben. Die Argumentation der Dissertation ist, dass die menschliche Bewegungssynchronisierung ein einfaches aber bemerkenswertes menschliches Interaktionsprinzip ist, welches in der Mensch-Roboter-Interaktion angewendet werden kann um menschliche Aktivitäten des täglichen Lebens, z.B. Aufnahme-und-Ablege-Aufgaben (pick-and-place tasks), zu unterstützen. Diese Argumentation wird auf fünf Publikationen gestützt. In der ersten Publikation wird die menschliche Bewegungssynchronisierung in einer zielgerichteten Aufgabe untersucht, welche die gleichen Anforderungen erfüllt wie die Aufnahme- und Ablageaufgaben des täglichen Lebens. Um zu untersuchen ob eine rein repetitive Bewegung des Roboters ausreichend ist um den Menschen zur Etablierung von Bewegungssynchronisierung zu ermutigen, wird in der zweiten Publikation eine Mensch-Roboter-Interaktionsstudie vorgestellt in welcher ein Mensch mit einem nicht-adaptiven Roboter interagiert. In dieser Studie wird jedoch keine Bewegungssynchronisierung zwischen Mensch und Roboter etabliert, was die Notwendigkeit von adaptiven Mechanismen unterstreicht. Daher wird in der dritten Publikation menschliches Adaptationsverhalten in der Bewegungssynchronisierung in zielgerichteten Aufgaben untersucht. Um die so gefundenen Mechanismen für die Mensch-Roboter Interaktion nutzbar zu machen, wird in der vierten Publikation die Entwicklung eines Interaktionsmodells basierend auf Dynamischer Systemtheorie behandelt. Dieses Modell kann direkt in eine Roboterplattform implementiert werden. Anschließend wird kurz auf eine erste Studie zur Mensch- Roboter Interaktion basierend auf dem entwickelten Modell eingegangen. Die letzte Publikation beschreibt eine Weiterentwicklung des bisherigen Vorgehens welche der Tendenz im menschlichen Verhalten Rechnung trägt, die Bewegungen an Ereignissen auszurichten. Hier wird außerdem eine erste Mensch-Roboter- Interaktionsstudie vorgestellt, die die Anwendbarkeit des Modells bestätigt. Die Dissertation wird mit einer Diskussion der präsentierten Ergebnisse im Kontext der Mensch-Roboter-Interaktion und psychologischer Aspekte der Interaktionsforschung sowie der Problematik von beiderseitiger Adaptivität abgeschlossen

    A practice-inspired mindset for researching the psychophysiological and medical health effects of recreational dance (dance pport)

    Get PDF
    “Dance” has been associated with many psychophysiological and medical health effects. However, varying definitions of what constitute “dance” have led to a rather heterogenous body of evidence about such potential effects, leaving the picture piecemeal at best. It remains unclear what exact parameters may be driving positive effects. We believe that this heterogeneity of evidence is partly due to a lack of a clear definition of dance for such empirical purposes. A differentiation is needed between (a) the effects on the individual when the activity of “dancing” is enjoyed as a dancer within different dance domains (e.g., professional/”high-art” type of dance, erotic dance, religious dance, club dancing, Dance Movement Therapy (DMT), and what is commonly known as hobby, recreational or social dance), and (b) the effects on the individual within these different domains, as a dancer of the different dance styles (solo dance, partnering dance, group dance; and all the different styles within these). Another separate category of dance engagement is, not as a dancer, but as a spectator of all of the above. “Watching dance” as part of an audience has its own set of psychophysiological and neurocognitive effects on the individual, and depends on the context where dance is witnessed. With the help of dance professionals, we first outline some different dance domains and dance styles, and outline aspects that differentiate them, and that may, therefore, cause differential empirical findings when compared regardless (e.g., amount of interpersonal contact, physical exertion, context, cognitive demand, type of movements, complexity of technique and ratio of choreography/improvisation). Then, we outline commonalities between all dance styles. We identify six basic components that are part of any dance practice, as part of a continuum, and review and discuss available research for each of them concerning the possible health and wellbeing effects of each of these components, and how they may relate to the psychophysiological and health effects that are reported for “dancing”: (1) rhythm and music, (2) sociality, (3) technique and fitness, (4) connection and connectedness (self-intimation), (5) flow and mindfulness, (6) aesthetic emotions and imagination. Future research efforts might take into account the important differences between types of dance activities, as well as the six components, for a more targeted assessment of how “dancing” affects the human body
    • …
    corecore