566 research outputs found

    BER and outage probability of DPSK subcarrier intensity modulated free space optics in fully developed speckle.

    Get PDF
    In this paper a differential phase shift keying (DPSK) subcarrier intensity modulated (SIM) free space optical (FSO) link is considered in negative exponential atmospheric turbulence environment. To mitigate the scintillation effect, the selection combining spatial diversity scheme (SelC) is employed at the receiver. Bit error rate (BER) and outage probability (Pout) analysis are presented with and without the SelC spatial diversity. It is shown that at a BER of 10-6, a maximum diversity gain 25 dB is predicted. And about 60 dBm signal power is required to achieve an outage probability of 10-6, based on a threshold BER of 10-4

    IR-UWB for multiple-access with differential-detection receiver

    Get PDF
    Impulse-Radio Ultra-Wideband (IR-UWB) emerged as a new wireless technology because of its unique characteristics. Such characteristics are the ability to support rich-multimedia applications over short-ranges, the ability to share the available spectrum among multi-users, and the ability to design less complex transceivers for wireless communication systems functioning based on this technology. In this thesis a novel noncoherent IR-UWB receiver designed to support multiple-access is proposed. The transmitter of the proposed system employs the noncoherent bit-level differential phase-shift keying modulation combined with direct-sequence code division multiple-access. The system is investigated under the effect of the additive white Gaussian noise with multiple-access channel. The receiver implements bit-level differential-detection to recover information bits. Closed-form expression for the average probability of error in the proposed receiver while considering the channel effects is analytically derived. This receiver is compared against another existing coherent receiver in terms of bit error rate performance to confirm its practicality. The proposed receiver is characterized by its simple design requirements and its multiple-access efficiency

    Signal Processing Design of Low Probability of Intercept Waveforms

    Get PDF
    This thesis investigates a modification to Differential Phase Shift Keyed (DPSK) modulation to create a Low Probability of Interception/Exploitation (LPI/LPE) communications signal. A pseudorandom timing offset is applied to each symbol in the communications stream to intentionally create intersymbol interference (ISI) that hinders accurate symbol estimation and bit sequence recovery by a non-cooperative receiver. Two cooperative receiver strategies are proposed to mitigate the ISI due to symbol timing offset: a modified minimum Mean Square Error (MMSE) equalization algorithm and a multiplexed bank of equalizer filters determined by an adaptive Least Mean Square (LMS) algorithm. Both cooperative receivers require some knowledge of the pseudorandom symbol timing dither to successfully demodulate the communications waveform. Numerical Matlab® simulation is used to demonstrate the bit error rate performance of cooperative receivers and notional non-cooperative receivers for binary, 4-ary, and 8-ary DPSK waveforms transmitted through a line-of-sight, additive white Gaussian noise channel. Simulation results suggest that proper selection of pulse shape and probability distribution of symbol timing offsets produces a waveform that is accurately demodulated by the proposed cooperative receivers and significantly degrades non-cooperative receiver symbol estimation accuracy. In typical simulations, non-cooperative receivers required 2-8 dB more signal power than cooperative receivers to achieve a bit error rate of 1.0%. For nearly all reasonable parameter selections, non-cooperative receivers produced bit error rates in excess of 0.1%, even when signal power is unconstrained

    Low Probability of Intercept Waveforms via Intersymbol Dither Performance under Multipath Conditions

    Get PDF
    This thesis examines the effects of multipath interference on Low Probability of Intercept (LPI) waveforms generated using intersymbol dither. LPI waveforms are designed to be difficult for non-cooperative receivers to detect and manipulate, and have many uses in secure communications applications. In prior research, such a waveform was designed using a dither algorithm to vary the time between the transmission of data symbols in a communication system. This work showed that such a method can be used to frustrate attempts to use non-cooperative receiver algorithms to recover the data. This thesis expands on prior work by examining the effects of multipath interference on cooperative and non-cooperative receiver performance to assess the above method’s effectiveness using a more realistic model of the physical transmission channel. Both two and four ray multipath interference channel models were randomly generated using typical multipath power profiles found in existing literature. Different combinations of maximum allowable symbol delay, pulse shapes and multipath channels were used to examine the bit error rate performance of 1) a Minimum Mean Squared Error (MMSE) cooperative equalizer structure with prior knowledge of the dither pattern and 2) a Constant Modulus Algorithm (CMA) non-cooperative equalizer. Cooperative MMSE equalization resulted in approximately 6-8 dB BER performance improvement in Eb/No over non-cooperative equalization, and for a full range symbol timing dither non-cooperative equalization yields a theoretical BER limit of Pb=10−1. For 50 randomly generated multipath channels, six of the four ray channels and 15 of the two ray channels exhibited extremely poor equalization results, indicating a level of algorithm sensitivity to multipath conditions

    Development of an integrated silicon photonic transceiver for access networks

    Full text link
    Debido a la imparable aparición de dispositivos móviles multifunción junto con aplicaciones que requieren cada vez más un mayor ancho de banda en cualquier momento y en cualquier lugar, las futuras redes de acceso deberán ser capaces de proporcionar servicios tanto inalámbricos como cableados. Es por ello que una solución a seguir es el uso de sistemas de comunicaciones ópticas como medio de transporte de señales inalámbricas en enlaces de radio sobre fibra. Con ello, se converge a un dominio óptico reduciendo y aliviando el cuello de botella entre los estándares de acceso inalámbrico y cableado. En esta tesis, como parte de los objetivos establecidos en el proyecto europeo HELIOS en el que está enmarcada, se han investigado y desarrollado los bloques funcionales básicos necesarios para realizar un transceptor fotónico integrado trabajando en el rango de longitudes de onda milimétricas, y haciendo uso de los formatos de modulación más robustos y que mejor se adaptan al ámbito de aplicación considerado. El trabajo que se presenta en esta tesis se puede dividir básicamente en tres partes. La primera de ellas ofrece una descripción general de los beneficios del uso de la fotónica en silicio para el desarrollo de enlaces inalámbricos a velocidades de Gbps, así como el estado del arte de los transceptores desarrollados por los grupos de investigación más activos y punteros para satisfacer las necesidades de mercado, cada vez más exigentes. La segunda parte se centra en el estudio y desarrollo del transmisor integrado de onda milimétrica. Primero realizamos una breve introducción teórica tanto del funcionamiento de los dispositivos que forman parte del transmisor, como a los formatos de modulación existentes, centrando la atención en la modulación por desplazamiento de fase (PSK) que es la que se va a utilizar en el desarrollo de los dispositivos implicados, y más concretamente en la modulación (diferencial) de fase en cuadratura ((D)QPSK). También se presentan los bloques básicos que integran nuestro transmisor y se fijan las especificaciones que deben cumplir dichos bloques para conseguir una transmisión libre de errores. El transmisor está compuesto por un filtro/demultiplexor encargado de separar dos portadoras ópticas separadas una frecuencia de 60 GHz. Una de estas portadoras es modulada al pasar por un modulador DQPSK basado en una estructura de dos MachZehnders (MZs) anidados, para ser nuevamente combinada con la otra portadora óptica que se ha mantenido intacta. Una vez combinadas, éstas son fotodetectadas para ser transmitidas inalámbricamente. En la tercera parte de esta tesis, se investiga el uso de un esquema de diversidad en polarización junto a un receptor DQPSK integrado para la demodulación de la señal recibida. El esquema de diversidad en polarización está formado básicamente por dos bloques: un separador de polarización con el objetivo de separar la luz a la entrada del chip en sus dos componentes ortogonales; y un rotador de polarización. En lo que se refiere al receptor DQPSK propiamente dicho, se ha investigado y optimizado cada uno de los bloques funcionales que lo componen. Éstos son básicamente un divisor de potencia termo-ópticamente sintonizable basado en un interferómetro MZ, en serie con un interferómetro MZ que introduce un retardo de duración de un bit en uno de sus brazos, para obtener una correcta demodulación diferencial. El siguiente bloque que forma parte de nuestro receptor DQPSK es un 2x4 acoplador de interferencia multimodal actuando como un híbrido de 90 grados, cuyas salidas van a parar a dos fotodetectores balanceados de germanio. Las contribuciones principales de esta tesis han sido: ¿ Demostración de un filtro/demultiplexor con tres grados de sintonización con una relación de extinción superior a 25dB. ¿ Demostración de un rotador con una longitud de tan sólo 25µm y CMOS compatible. ¿ Demostración de un modulador DPSK a una velocidad máxima de 20 Gbit/s. ¿ Demostración de un demodulador DQPSK a una velocidad máxima de 20 Gbit/s.Due to the relentless emergence of multifunction mobile devices with applications that require increasingly greater bandwidth at anytime and anywhere, future access networks must be capable of providing both wireless and wired services. The use of optical communications systems as transport medium of wireless signals over fiber radio links is a steady solution to be taken into account. This will make possible a convergence to an optical domain reducing and alleviating the bottleneck between wireless access standards and current wired access. In this thesis, as part of the objectives of the European project HELIOS in which it is framed, we have investigated and developed the basic functional blocks needed to achieve an integrated photonic transceiver working in the range of millimetre wavelengths, and using robust modulation formats that best fit the scope considered. The work presented in this thesis can be basically divided into three parts. The first one provides an overview of the benefits of using silicon photonics for the development of wireless links at rates of Gbps, and the state of the art of the transceivers reported by the most important research groups in order to meet the increasingly demanding needs¿ market. The second part focuses on the study and development of millimetre-wave integrated transmitter. First we provide a brief theoretical introduction of the operation principles of the devices involved in the transmitter such as a modulation formats, focusing on the phase shift keying (PSK) which is the one that will be used, particularly the (differential) quadrature phase shift keying ((D) QPSK). We also present the building blocks involved in our transmitter and we set the specifications that must be met by these devices in order to achieve an error-free transmission. The transmitter includes a filter/demultiplexer which must separate two optical carriers 60 GHz separated. One of these optical carriers is modulated by passing through a DQPSK Mach-Zehnder-based modulator (MZM) by arranging two MZMs in a nested configuration. Using a combiner, the modulated optical signal and the un-modulated carrier are combined and photodetected to be transmitted wirelessly. In the third part of this thesis, we investigate the use of a polarization diversity scheme with an integrated DQPSK receiver for demodulating of the wireless signal. The polarization diversity scheme basically consists of two blocks: a polarization splitter in order to separate the random polarization state of the incoming light into its two orthogonal components, and a polarization rotator. Regarding the DQPSK receiver itself, all the functional blocks that comprise it have been investigated and optimized. It basically includes a thermo-optically tunable MZ interferometer power splitter, in series with a MZ interferometer that introduces, in one of its arms, a delay of one bit length in order to obtain a correct differential demodulation. The next building block of our DQPSK receiver is a 2x4 multimode interference coupler acting as a 90 degree hybrid, whose outputs are connected to two balanced germanium photodetectors. The main contributions of this thesis are: ¿ Demonstration of a filter/demultiplexer with three degrees of tuning and an extinction ratio greater than 25dB. ¿ Demonstration of a polarization rotator with a length of only 25¿m and CMOS compatible. ¿ Demonstration of a DPSK modulator at a maximum rate of 20 Gbit/s. ¿ Demonstration of a DQPSK demodulator to a maximum rate of 20 Gbit/s.Aamer, M. (2013). Development of an integrated silicon photonic transceiver for access networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31649TESI

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    A New All-Optical Signal Regeneration Technique for 10 GB/S DPSK Transmission System

    Get PDF
    The transmission of high power inside the optical fiber, produce amplitude noise, phase noise and other transmission impairments that degrade the performance of optical communication system. The signal regeneration techniques are used to mitigate these nonlinear impairments in the electrical or in the optical domain. All-optical signal regeneration techniques are one of the solutions to mitigate these nonlinear transmission impairments in the optical domain without converting the signal from optical to electrical domain. The existing techniques are not capable enough to attain the Bit Error Rate (BER) less than 10-10 with the power penalty less than – 9dBm. In this paper, a new all-optical signal regeneration technique is developed that mitigate amplitude and phase noises in the optical domain. The new optical signal regeneration technique is developed by combining the two existing technique one is 3R (Reshaping, Reamplification and Retiming) regeneration and other is Phase Sensitive Amplification (PSA). The 10Gb/s Differential Phase shift Keying (DPSK) noisy transmission system is used to verify the features of developed technique. The developed technique successfully mitigates the nonlinear impairments from the noisy DPSK system with significant improvement in BER at low power penalty with the additional feature of high Q-factor and an eye open response for the regenerated signal. It is determined that BER of 10-12 is achieved at the power penalty of -14 dBm with Q-factor of 42 and an eye opened response. The developed technique in the DPSK system is realized using commercial software package Optisystem. The designed technique will be helpful to enhance the performance existing high-speed optical communication by achieving the minimum BER at low power penalty
    corecore