4 research outputs found

    Comparing and Combining Lexicase Selection and Novelty Search

    Full text link
    Lexicase selection and novelty search, two parent selection methods used in evolutionary computation, emphasize exploring widely in the search space more than traditional methods such as tournament selection. However, lexicase selection is not explicitly driven to select for novelty in the population, and novelty search suffers from lack of direction toward a goal, especially in unconstrained, highly-dimensional spaces. We combine the strengths of lexicase selection and novelty search by creating a novelty score for each test case, and adding those novelty scores to the normal error values used in lexicase selection. We use this new novelty-lexicase selection to solve automatic program synthesis problems, and find it significantly outperforms both novelty search and lexicase selection. Additionally, we find that novelty search has very little success in the problem domain of program synthesis. We explore the effects of each of these methods on population diversity and long-term problem solving performance, and give evidence to support the hypothesis that novelty-lexicase selection resists converging to local optima better than lexicase selection

    Lexicase selection in Learning Classifier Systems

    Full text link
    The lexicase parent selection method selects parents by considering performance on individual data points in random order instead of using a fitness function based on an aggregated data accuracy. While the method has demonstrated promise in genetic programming and more recently in genetic algorithms, its applications in other forms of evolutionary machine learning have not been explored. In this paper, we investigate the use of lexicase parent selection in Learning Classifier Systems (LCS) and study its effect on classification problems in a supervised setting. We further introduce a new variant of lexicase selection, called batch-lexicase selection, which allows for the tuning of selection pressure. We compare the two lexicase selection methods with tournament and fitness proportionate selection methods on binary classification problems. We show that batch-lexicase selection results in the creation of more generic rules which is favorable for generalization on future data. We further show that batch-lexicase selection results in better generalization in situations of partial or missing data.Comment: Genetic and Evolutionary Computation Conference, 201
    corecore