13,144 research outputs found

    Macroscopic Noisy Bounded Confidence Models with Distributed Radical Opinions

    Get PDF
    In this article, we study the nonlinear Fokker-Planck (FP) equation that arises as a mean-field (macroscopic) approximation of bounded confidence opinion dynamics, where opinions are influenced by environmental noises and opinions of radicals (stubborn individuals). The distribution of radical opinions serves as an infinite-dimensional exogenous input to the FP equation, visibly influencing the steady opinion profile. We establish mathematical properties of the FP equation. In particular, we (i) show the well-posedness of the dynamic equation, (ii) provide existence result accompanied by a quantitative global estimate for the corresponding stationary solution, and (iii) establish an explicit lower bound on the noise level that guarantees exponential convergence of the dynamics to stationary state. Combining the results in (ii) and (iii) readily yields the input-output stability of the system for sufficiently large noises. Next, using Fourier analysis, the structure of opinion clusters under the uniform initial distribution is examined. Specifically, two numerical schemes for identification of order-disorder transition and characterization of initial clustering behavior are provided. The results of analysis are validated through several numerical simulations of the continuum-agent model (partial differential equation) and the corresponding discrete-agent model (interacting stochastic differential equations) for a particular distribution of radicals

    Opinion diversity and community formation in adaptive networks

    Full text link
    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. The existing models of such co-evolution typically lead to the final states where network nodes either reach a global consensus or break into separated communities, each of which holding its own community consensus. Such results, however, can hardly explain the richness of real-life observations that opinions are always diversified with no global or even community consensus, and people seldom, if not never, totally cut off themselves from dissenters. In this article, we show that, a simple model integrating consensus formation, link rewiring and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities remain to be interconnected by non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the phase transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity, etc.Comment: 12 pages, 8 figures, Journa

    Homogeneous symmetrical threshold model with nonconformity: independence vs. anticonformity

    Full text link
    We study two variants of the modified Watts threshold model with a noise (with nonconformity, in the terminology of social psychology) on a complete graph. Within the first version, a noise is introduced via so-called independence, whereas in the second version anticonformity plays the role of a noise, which destroys the order. The modified Watts threshold model, studied here, is homogeneous and posses an up-down symmetry, which makes it similar to other binary opinion models with a single-flip dynamics, such as the majority-vote and the q-voter models. Because within the majority-vote model with independence only continuous phase transitions are observed, whereas within the q-voter model with independence also discontinuous phase transitions are possible, we ask the question about the factor, which could be responsible for discontinuity of the order parameter. We investigate the model via the mean-field approach, which gives the exact result in the case of a complete graph, as well as via Monte Carlo simulations. Additionally, we provide a heuristic reasoning, which explains observed phenomena. We show that indeed, if the threshold r = 0.5, which corresponds to the majority-vote model, an order-disorder transition is continuous. Moreover, results obtained for both versions of the model (one with independence and the second one with anticonformity) give the same results, only rescaled by the factor of 2. However, for r > 0.5 the jump of the order parameter and the hysteresis is observed for the model with independence, and both versions of the model give qualitatively different results.Comment: 12 pages, 4 figures, accepted to Complexit

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors
    • …
    corecore