8 research outputs found

    Secured and Smart Electronic voting system

    Get PDF
    Now a days various displays are  becoming available for implementing a new kind of human computer interaction (HCI) method. Among them, touch  panel  displays  have  been used in wide variety of applications and are proven to be a useful interface infrastructure. We exemplify our approach through the design and development of secured & smart ectronic voting system. As the Supreme Court recently ordered to include the “Reject” option, so that the voter can reject if he is not interested in any party. This touch screen  based electronic voting system provides confirmation after selecting a party from the list. A beep sound will be generated when the voter presses the confirmation so that the vote will be casted successfully to a right party. This type of electronic voting systems allow easy confirmation and casting of vote without any assistance. This system also provides security by entering the voter ID whether it is correct or not. We also conducted a preliminary evaluation to verify the effectiveness of the system

    Computer simulated needle manipulation of Chinese acupuncture with realistic haptic feedback.

    Get PDF
    Leung Ka Man.Thesis submitted in: August 2002.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 81-84).Abstracts in English and Chinese.Abstract --- p.iiAcknowledgements --- p.ivContents --- p.vList of Figures --- p.viiiList of Tables --- p.xChapter 1. --- Introduction --- p.1Chapter 1.1 --- Surgical Needle Simulation --- p.4Chapter 1.1.1 --- Data Source --- p.5Chapter 1.1.2 --- Computer-aided training simulation --- p.6Chapter 1.1.3 --- Existing Systems --- p.8Chapter 1.2 --- Research Goal --- p.10Chapter 1.3 --- Organization of this Thesis --- p.12Chapter 2. --- Haptization of Needle Interactions --- p.13Chapter 2.1 --- Data Collection --- p.13Chapter 2.1.1 --- Force Measurement --- p.14Chapter 2.1.2 --- Data Correlation --- p.17Chapter 2.1.3 --- Expert Opinion --- p.18Chapter 2.2 --- Haptic Display Devices --- p.18Chapter 2.2.1 --- General-purpose Devices --- p.19Chapter 2.2.2 --- Tailor-made Devices --- p.20Chapter 2.3 --- Haptic Models for Tissues --- p.21Chapter 2.3.1 --- Stiffness Models --- p.21Chapter 2.3.2 --- Friction Models --- p.22Chapter 2.3.3 --- Modelling of needle operations --- p.23Chapter 2.4 --- Chapter Summary --- p.24Chapter 3. --- Haptic Rendering of Bi-directional Needle Manipulation --- p.25Chapter 3.1 --- Data Source and Pre-processing --- p.26Chapter 3.1.1 --- Virtual Body Surface Construction --- p.28Chapter 3.1.2 --- Tissue Mapping for Haptic Rendering --- p.29Chapter 3.2 --- The PHANToM´ёØ Haptic Device --- p.31Chapter 3.3 --- Force Profile Analysis --- p.33Chapter 3.4 --- Haptic Model Construction --- p.37Chapter 3.4.1 --- Skin --- p.41Chapter 3.4.2 --- Adipose Tissue --- p.48Chapter 3.4.3 --- Muscle --- p.49Chapter 3.4.4 --- Bone --- p.50Chapter 3.5 --- Force Composition --- p.51Chapter 3.5.1 --- Structure Weight Compensation --- p.52Chapter 3.5.2 --- Path Constraint Force --- p.52Chapter 3.5.3 --- Needle Axial Force --- p.53Chapter 3.6 --- Interactive Calibration --- p.60Chapter 3.7 --- Skin Deformation --- p.61Chapter 3.8 --- Chapter Summary --- p.63Chapter 4. --- Parallel Visual-Haptic Rendering --- p.64Chapter 4.1 --- Parallel Network Architecture --- p.64Chapter 4.2 --- Visual Rendering Pipeline --- p.65Chapter 4.3 --- Haptic Rendering Pipeline --- p.67Chapter 4.4 --- Chapter Summary --- p.67Chapter 5. --- User Interface --- p.68Chapter 5.1 --- Needle Practice --- p.68Chapter 5.1.1 --- Moving Mode --- p.69Chapter 5.1.2 --- Acupuncture Atlas --- p.70Chapter 5.1.3 --- Training Results --- p.70Chapter 5.1.4 --- User Controls --- p.71Chapter 5.2 --- Device Calibration --- p.72Chapter 5.3 --- Model Settings --- p.72Chapter 5.4 --- Chapter Summary --- p.72Chapter 6. --- Conclusion --- p.73Chapter 6.1 --- Research Summary --- p.73Chapter 6.2 --- Suggested Improvement --- p.74Chapter 6.3 --- Future Research Works --- p.75Appendix A: Mapping Table for Tissues --- p.76Appendix B: Incremental Viscoelastic Model --- p.78Appendix C: Model Parameter Values --- p.80Bibliography --- p.8

    Virtual reality training for micro-robotic cell injection

    Full text link
    This research was carried out to fill the gap within existing knowledge on the approaches to supplement the training for micro-robotic cell injection procedure by utilising virtual reality and haptic technologies

    Computational haptics : the Sandpaper system for synthesizing texture for a force-feedback display

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1995.Includes bibliographical references (p. 155-180).by Margaret Diane Rezvan Minsky.Ph.D

    Effects of Haptization on Disabled People

    No full text
    corecore